Abstract:Visual navigation in unknown environments based solely on natural language descriptions is a key capability for intelligent robots. In this work, we propose a navigation framework built upon off-the-shelf Visual Language Models (VLMs), enhanced with two human-inspired mechanisms: perspective-based active grounding, which dynamically adjusts the robot's viewpoint for improved visual inspection, and historical memory backtracking, which enables the system to retain and re-evaluate uncertain observations over time. Unlike existing approaches that passively rely on incidental visual inputs, our method actively optimizes perception and leverages memory to resolve ambiguity, significantly improving vision-language grounding in complex, unseen environments. Our framework operates in a zero-shot manner, achieving strong generalization to diverse and open-ended language descriptions without requiring labeled data or model fine-tuning. Experimental results on Habitat-Matterport 3D (HM3D) show that our method outperforms state-of-the-art approaches in language-driven object navigation. We further demonstrate its practicality through real-world deployment on a quadruped robot, achieving robust and effective navigation performance.
Abstract:Utilizing robots for autonomous target search in complex and unknown environments can greatly improve the efficiency of search and rescue missions. However, existing methods have shown inadequate performance due to hardware platform limitations, inefficient viewpoint selection strategies, and conservative motion planning. In this work, we propose HEATS, which enhances the search capability of mobile manipulators in complex and unknown environments. We design a target viewpoint planner tailored to the strengths of mobile manipulators, ensuring efficient and comprehensive viewpoint planning. Supported by this, a whole-body motion planner integrates global path search with local IPC optimization, enabling the mobile manipulator to safely and agilely visit target viewpoints, significantly improving search performance. We present extensive simulated and real-world tests, in which our method demonstrates reduced search time, higher target search completeness, and lower movement cost compared to classic and state-of-the-art approaches. Our method will be open-sourced for community benefit.