Abstract:The Vera C. Rubin Observatory's Legacy Survey of Space and Time (LSST) will produce unprecedented volumes of heterogeneous astronomical data (images, catalogs, and alerts) that challenge traditional analysis pipelines. The LSST Dark Energy Science Collaboration (DESC) aims to derive robust constraints on dark energy and dark matter from these data, requiring methods that are statistically powerful, scalable, and operationally reliable. Artificial intelligence and machine learning (AI/ML) are already embedded across DESC science workflows, from photometric redshifts and transient classification to weak lensing inference and cosmological simulations. Yet their utility for precision cosmology hinges on trustworthy uncertainty quantification, robustness to covariate shift and model misspecification, and reproducible integration within scientific pipelines. This white paper surveys the current landscape of AI/ML across DESC's primary cosmological probes and cross-cutting analyses, revealing that the same core methodologies and fundamental challenges recur across disparate science cases. Since progress on these cross-cutting challenges would benefit multiple probes simultaneously, we identify key methodological research priorities, including Bayesian inference at scale, physics-informed methods, validation frameworks, and active learning for discovery. With an eye on emerging techniques, we also explore the potential of the latest foundation model methodologies and LLM-driven agentic AI systems to reshape DESC workflows, provided their deployment is coupled with rigorous evaluation and governance. Finally, we discuss critical software, computing, data infrastructure, and human capital requirements for the successful deployment of these new methodologies, and consider associated risks and opportunities for broader coordination with external actors.
Abstract:Modern wide-field time-domain surveys facilitate the study of transient, variable and moving phenomena by conducting image differencing and relaying alerts to their communities. Machine learning tools have been used on data from these surveys and their precursors for more than a decade, and convolutional neural networks (CNNs), which make predictions directly from input images, saw particularly broad adoption through the 2010s. Since then, continually rapid advances in computer vision have transformed the standard practices around using such models. It is now commonplace to use standardized architectures pre-trained on large corpora of everyday images (e.g., ImageNet). In contrast, time-domain astronomy studies still typically design custom CNN architectures and train them from scratch. Here, we explore the affects of adopting various pre-training regimens and standardized model architectures on the performance of alert classification. We find that the resulting models match or outperform a custom, specialized CNN like what is typically used for filtering alerts. Moreover, our results show that pre-training on galaxy images from Galaxy Zoo tends to yield better performance than pre-training on ImageNet or training from scratch. We observe that the design of standardized architectures are much better optimized than the custom CNN baseline, requiring significantly less time and memory for inference despite having more trainable parameters. On the eve of the Legacy Survey of Space and Time and other image-differencing surveys, these findings advocate for a paradigm shift in the creation of vision models for alerts, demonstrating that greater performance and efficiency, in time and in data, can be achieved by adopting the latest practices from the computer vision field.




Abstract:We present ORACLE, the first hierarchical deep-learning model for real-time, context-aware classification of transient and variable astrophysical phenomena. ORACLE is a recurrent neural network with Gated Recurrent Units (GRUs), and has been trained using a custom hierarchical cross-entropy loss function to provide high-confidence classifications along an observationally-driven taxonomy with as little as a single photometric observation. Contextual information for each object, including host galaxy photometric redshift, offset, ellipticity and brightness, is concatenated to the light curve embedding and used to make a final prediction. Training on $\sim$0.5M events from the Extended LSST Astronomical Time-Series Classification Challenge, we achieve a top-level (Transient vs Variable) macro-averaged precision of 0.96 using only 1 day of photometric observations after the first detection in addition to contextual information, for each event; this increases to $>$0.99 once 64 days of the light curve has been obtained, and 0.83 at 1024 days after first detection for 19-way classification (including supernova sub-types, active galactic nuclei, variable stars, microlensing events, and kilonovae). We also compare ORACLE with other state-of-the-art classifiers and report comparable performance for the 19-way classification task, in addition to delivering accurate top-level classifications much earlier. The code and model weights used in this work are publicly available at our associated GitHub repository (https://github.com/uiucsn/ELAsTiCC-Classification).