Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Tashi Namgyal, Alexander Hepburn, Raul Santos-Rodriguez, Valero Laparra, Jesus Malo

Perceptual metrics are traditionally used to evaluate the quality of natural signals, such as images and audio. They are designed to mimic the perceptual behaviour of human observers and usually reflect structures found in natural signals. This motivates their use as loss functions for training generative models such that models will learn to capture the structure held in the metric. We take this idea to the extreme in the audio domain by training a compressive autoencoder to reconstruct uniform noise, in lieu of natural data. We show that training with perceptual losses improves the reconstruction of spectrograms and re-synthesized audio at test time over models trained with a standard Euclidean loss. This demonstrates better generalisation to unseen natural signals when using perceptual metrics.

Via

Tashi Namgyal, Alexander Hepburn, Raul Santos-Rodriguez, Valero Laparra, Jesus Malo

In this study, we investigate the feasibility of utilizing state-of-the-art image perceptual metrics for evaluating audio signals by representing them as spectrograms. The encouraging outcome of the proposed approach is based on the similarity between the neural mechanisms in the auditory and visual pathways. Furthermore, we customise one of the metrics which has a psychoacoustically plausible architecture to account for the peculiarities of sound signals. We evaluate the effectiveness of our proposed metric and several baseline metrics using a music dataset, with promising results in terms of the correlation between the metrics and the perceived quality of audio as rated by human evaluators.

Via

Alexander Hepburn, Valero Laparra, Raul Santos-Rodriguez, Jesús Malo

In the 1950s Horace Barlow and Fred Attneave suggested a connection between sensory systems and how they are adapted to the environment: early vision evolved to maximise the information it conveys about incoming signals. Following Shannon's definition, this information was described using the probability of the images taken from natural scenes. Previously, direct accurate predictions of image probabilities were not possible due to computational limitations. Despite the exploration of this idea being indirect, mainly based on oversimplified models of the image density or on system design methods, these methods had success in reproducing a wide range of physiological and psychophysical phenomena. In this paper, we directly evaluate the probability of natural images and analyse how it may determine perceptual sensitivity. We employ image quality metrics that correlate well with human opinion as a surrogate of human vision, and an advanced generative model to directly estimate the probability. Specifically, we analyse how the sensitivity of full-reference image quality metrics can be predicted from quantities derived directly from the probability distribution of natural images. First, we compute the mutual information between a wide range of probability surrogates and the sensitivity of the metrics and find that the most influential factor is the probability of the noisy image. Then we explore how these probability surrogates can be combined using a simple model to predict the metric sensitivity, giving an upper bound for the correlation of 0.85 between the model predictions and the actual perceptual sensitivity. Finally, we explore how to combine the probability surrogates using simple expressions, and obtain two functional forms (using one or two surrogates) that can be used to predict the sensitivity of the human visual system given a particular pair of images.

Via

Pablo Hernández-Cámara, Jorge Vila-Tomás, Valero Laparra, Jesús Malo

Subjective image quality measures based on deep neural networks are very related to models of visual neuroscience. This connection benefits engineering but, more interestingly, the freedom to optimize deep networks in different ways, make them an excellent tool to explore the principles behind visual perception (both human and artificial). Recently, a myriad of networks have been successfully optimized for many interesting visual tasks. Although these nets were not specifically designed to predict image quality or other psychophysics, they have shown surprising human-like behavior. The reasons for this remain unclear. In this work, we perform a thorough analysis of the perceptual properties of pre-trained nets (particularly their ability to predict image quality) by isolating different factors: the goal (the function), the data (learning environment), the architecture, and the readout: selected layer(s), fine-tuning of channel relevance, and use of statistical descriptors as opposed to plain readout of responses. Several conclusions can be drawn. All the models correlate better with human opinion than SSIM. More importantly, some of the nets are in pair of state-of-the-art with no extra refinement or perceptual information. Nets trained for supervised tasks such as classification correlate substantially better with humans than LPIPS (a net specifically tuned for image quality). Interestingly, self-supervised tasks such as jigsaw also perform better than LPIPS. Simpler architectures are better than very deep nets. In simpler nets, correlation with humans increases with depth as if deeper layers were closer to human judgement. This is not true in very deep nets. Consistently with reports on illusions and contrast sensitivity, small changes in the image environment does not make a big difference. Finally, the explored statistical descriptors and concatenations had no major impact.

Via

Valero Laparra, Alexander Hepburn, J. Emmanuel Johnson, Jesús Malo

In this paper we elaborate an extension of rotation-based iterative Gaussianization, RBIG, which makes image Gaussianization possible. Although RBIG has been successfully applied to many tasks, it is limited to medium dimensionality data (on the order of a thousand dimensions). In images its application has been restricted to small image patches or isolated pixels, because rotation in RBIG is based on principal or independent component analysis and these transformations are difficult to learn and scale. Here we present the \emph{Convolutional RBIG}: an extension that alleviates this issue by imposing that the rotation in RBIG is a convolution. We propose to learn convolutional rotations (i.e. orthonormal convolutions) by optimising for the reconstruction loss between the input and an approximate inverse of the transformation using the transposed convolution operation. Additionally, we suggest different regularizers in learning these orthonormal convolutions. For example, imposing sparsity in the activations leads to a transformation that extends convolutional independent component analysis to multilayer architectures. We also highlight how statistical properties of the data, such as multivariate mutual information, can be obtained from \emph{Convolutional RBIG}. We illustrate the behavior of the transform with a simple example of texture synthesis, and analyze its properties by visualizing the stimuli that maximize the response in certain feature and layer.

Via

José A. Padrón-Hidalgo, Valero Laparra, Gustau Camps-Valls

Anomaly detection is a field of intense research. Identifying low probability events in data/images is a challenging problem given the high-dimensionality of the data, especially when no (or little) information about the anomaly is available a priori. While plenty of methods are available, the vast majority of them do not scale well to large datasets and require the choice of some (very often critical) hyperparameters. Therefore, unsupervised and computationally efficient detection methods become strictly necessary. We propose an unsupervised method for detecting anomalies and changes in remote sensing images by means of a multivariate Gaussianization methodology that allows to estimate multivariate densities accurately, a long-standing problem in statistics and machine learning. The methodology transforms arbitrarily complex multivariate data into a multivariate Gaussian distribution. Since the transformation is differentiable, by applying the change of variables formula one can estimate the probability at any point of the original domain. The assumption is straightforward: pixels with low estimated probability are considered anomalies. Our method can describe any multivariate distribution, makes an efficient use of memory and computational resources, and is parameter-free. We show the efficiency of the method in experiments involving both anomaly detection and change detection in different remote sensing image sets. Results show that our approach outperforms other linear and nonlinear methods in terms of detection power in both anomaly and change detection scenarios, showing robustness and scalability to dimensionality and sample sizes.

Via

Daniel Heestermans Svendsen, Daniel Hernández-Lobato, Luca Martino, Valero Laparra, Alvaro Moreno, Gustau Camps-Valls

Earth observation from satellites offers the possibility to monitor our planet with unprecedented accuracy. Radiative transfer models (RTMs) encode the energy transfer through the atmosphere, and are used to model and understand the Earth system, as well as to estimate the parameters that describe the status of the Earth from satellite observations by inverse modeling. However, performing inference over such simulators is a challenging problem. RTMs are nonlinear, non-differentiable and computationally costly codes, which adds a high level of difficulty in inference. In this paper, we introduce two computational techniques to infer not only point estimates of biophysical parameters but also their joint distribution. One of them is based on a variational autoencoder approach and the second one is based on a Monte Carlo Expectation Maximization (MCEM) scheme. We compare and discuss benefits and drawbacks of each approach. We also provide numerical comparisons in synthetic simulations and the real PROSAIL model, a popular RTM that combines land vegetation leaf and canopy modeling. We analyze the performance of the two approaches for modeling and inferring the distribution of three key biophysical parameters for quantifying the terrestrial biosphere.

Via

Pablo Hernández-Cámara, Valero Laparra, Jesús Malo

One of the key problems in computer vision is adaptation: models are too rigid to follow the variability of the inputs. The canonical computation that explains adaptation in sensory neuroscience is divisive normalization, and it has appealing effects on image manifolds. In this work we show that including divisive normalization in current deep networks makes them more invariant to non-informative changes in the images. In particular, we focus on U-Net architectures for image segmentation. Experiments show that the inclusion of divisive normalization in the U-Net architecture leads to better segmentation results with respect to conventional U-Net. The gain increases steadily when dealing with images acquired in bad weather conditions. In addition to the results on the Cityscapes and Foggy Cityscapes datasets, we explain these advantages through visualization of the responses: the equalization induced by the divisive normalization leads to more invariant features to local changes in contrast and illumination.

Via

Alexander Hepburn, Valero Laparra, Raul Santos-Rodriguez, Johannes Ballé, Jesús Malo

It has been demonstrated many times that the behavior of the human visual system is connected to the statistics of natural images. Since machine learning relies on the statistics of training data as well, the above connection has interesting implications when using perceptual distances (which mimic the behavior of the human visual system) as a loss function. In this paper, we aim to unravel the non-trivial relationship between the probability distribution of the data, perceptual distances, and unsupervised machine learning. To this end, we show that perceptual sensitivity is correlated with the probability of an image in its close neighborhood. We also explore the relation between distances induced by autoencoders and the probability distribution of the data used for training them, as well as how these induced distances are correlated with human perception. Finally, we discuss why perceptual distances might not lead to noticeable gains in performance over standard Euclidean distances in common image processing tasks except when data is scarce and the perceptual distance provides regularization.

Via

Fernando Mateo, Jordi Munoz-Mari, Valero Laparra, Jochem Verrelst, Gustau Camps-Valls

Gaussian Processes (GPs) has experienced tremendous success in geoscience in general and for bio-geophysical parameter retrieval in the last years. GPs constitute a solid Bayesian framework to formulate many function approximation problems consistently. This paper reviews the main theoretical GP developments in the field. We review new algorithms that respect the signal and noise characteristics, that provide feature rankings automatically, and that allow applicability of associated uncertainty intervals to transport GP models in space and time. All these developments are illustrated in the field of geoscience and remote sensing at a local and global scales through a set of illustrative examples.

Via