Abstract:Chain-of-Thought (CoT) reasoning enhances Large Language Models (LLMs) by prompting intermediate steps, improving accuracy and robustness in arithmetic, logic, and commonsense tasks. However, this benefit comes with high computational costs: longer outputs increase latency, memory usage, and KV-cache demands. These issues are especially critical in software engineering tasks where concise and deterministic outputs are required. To investigate these trade-offs, we conduct an empirical study based on code generation benchmarks. The results reveal that longer CoT does not always help. Excessive reasoning often causes truncation, accuracy drops, and latency up to five times higher, with failed outputs consistently longer than successful ones. These findings challenge the assumption that longer reasoning is inherently better and highlight the need for adaptive CoT control. Motivated by this, we propose SEER (Self-Enhancing Efficient Reasoning), an adaptive framework that compresses CoT while preserving accuracy. SEER combines Best-of-N sampling with task-aware adaptive filtering, dynamically adjusting thresholds based on pre-inference outputs to reduce verbosity and computational overhead. We then evaluate SEER on three software engineering tasks and one math task. On average, SEER shortens CoT by 42.1%, improves accuracy by reducing truncation, and eliminates most infinite loops. These results demonstrate SEER as a practical method to make CoT-enhanced LLMs more efficient and robust, even under resource constraints.
Abstract:Machine Learning as a Service (MLaaS) is a popular cloud-based solution for customers who aim to use an ML model but lack training data, computation resources, or expertise in ML. In this case, the training datasets are typically a private possession of the ML or data companies and are inaccessible to the customers, but the customers still need an approach to confirm that the training datasets meet their expectations and fulfil regulatory measures like fairness. However, no existing work addresses the above customers' concerns. This work is the first attempt to solve this problem, taking data origin as an entry point. We first define origin membership measurement and based on this, we then define diversity and fairness metrics to address customers' concerns. We then propose a strategy to estimate the values of these two metrics in the inaccessible training dataset, combining shadow training techniques from membership inference and an efficient featurization scheme in multiple instance learning. The evaluation contains an application of text review polarity classification applications based on the language BERT model. Experimental results show that our solution can achieve up to 0.87 accuracy for membership inspection and up to 99.3% confidence in inspecting diversity and fairness distribution.