Abstract:Large Vision-Language Models (LVLMs) are increasingly equipped with robust safety safeguards to prevent responses to harmful or disallowed prompts. However, these defenses often focus on analyzing explicit textual inputs or relevant visual scenes. In this work, we introduce Text-DJ, a novel jailbreak attack that bypasses these safeguards by exploiting the model's Optical Character Recognition (OCR) capability. Our methodology consists of three stages. First, we decompose a single harmful query into multiple and semantically related but more benign sub-queries. Second, we pick a set of distraction queries that are maximally irrelevant to the harmful query. Third, we present all decomposed sub-queries and distraction queries to the LVLM simultaneously as a grid of images, with the position of the sub-queries being middle within the grid. We demonstrate that this method successfully circumvents the safety alignment of state-of-the-art LVLMs. We argue this attack succeeds by (1) converting text-based prompts into images, bypassing standard text-based filters, and (2) inducing distractions, where the model's safety protocols fail to link the scattered sub-queries within a high number of irrelevant queries. Overall, our findings expose a critical vulnerability in LVLMs' OCR capabilities that are not robust to dispersed, multi-image adversarial inputs, highlighting the need for defenses for fragmented multimodal inputs.
Abstract:Optical continuous glucose monitoring (CGM) systems are emerging for personalized glucose management owing to their lower cost and prolonged durability compared to conventional electrochemical CGMs. Here, we report a computational CGM system, which integrates a biocompatible phosphorescence-based insertable biosensor and a custom-designed phosphorescence lifetime imager (PLI). This compact and cost-effective PLI is designed to capture phosphorescence lifetime images of an insertable sensor through the skin, where the lifetime of the emitted phosphorescence signal is modulated by the local concentration of glucose. Because this phosphorescence signal has a very long lifetime compared to tissue autofluorescence or excitation leakage processes, it completely bypasses these noise sources by measuring the sensor emission over several tens of microseconds after the excitation light is turned off. The lifetime images acquired through the skin are processed by neural network-based models for misalignment-tolerant inference of glucose levels, accurately revealing normal, low (hypoglycemia) and high (hyperglycemia) concentration ranges. Using a 1-mm thick skin phantom mimicking the optical properties of human skin, we performed in vitro testing of the PLI using glucose-spiked samples, yielding 88.8% inference accuracy, also showing resilience to random and unknown misalignments within a lateral distance of ~4.7 mm with respect to the position of the insertable sensor underneath the skin phantom. Furthermore, the PLI accurately identified larger lateral misalignments beyond 5 mm, prompting user intervention for re-alignment. The misalignment-resilient glucose concentration inference capability of this compact and cost-effective phosphorescence lifetime imager makes it an appealing wearable diagnostics tool for real-time tracking of glucose and other biomarkers.