Abstract:Large language models (LLMs) based on the Transformer have demonstrated strong performance across diverse tasks. However, current models still exhibit substantial limitations in out-of-distribution (OOD) generalization compared with humans. We investigate this gap through periodicity, one of the basic OOD scenarios. Periodicity captures invariance amid variation. Periodicity generalization represents a model's ability to extract periodic patterns from training data and generalize to OOD scenarios. We introduce a unified interpretation of periodicity from the perspective of abstract algebra and reasoning, including both single and composite periodicity, to explain why Transformers struggle to generalize periodicity. Then we construct Coper about composite periodicity, a controllable generative benchmark with two OOD settings, Hollow and Extrapolation. Experiments reveal that periodicity generalization in Transformers is limited, where models can memorize periodic data during training, but cannot generalize to unseen composite periodicity. We release the source code to support future research.
Abstract:Reinforcement learning with verifiable reward (RLVR) has become a promising paradigm for post-training large language models (LLMs) to improve their reasoning capability. However, when the rollout accuracy is low on hard problems, the reward becomes sparse, limiting learning efficiency and causing exploration bottlenecks. Existing approaches either rely on stronger LLMs for distillation or filter out difficult problems, which limits scalability or restricts reasoning improvement through exploration. We propose EvoCoT, a self-evolving curriculum learning framework based on two-stage chain-of-thought (CoT) reasoning optimization. EvoCoT constrains the exploration space by self-generating and verifying CoT trajectories, then gradually shortens them to expand the space in a controlled way. This enables LLMs to stably learn from initially unsolved hard problems under sparse rewards. We apply EvoCoT to multiple LLM families, including Qwen, DeepSeek, and Llama. Experiments show that EvoCoT enables LLMs to solve previously unsolved problems, improves reasoning capability without external CoT supervision, and is compatible with various RL fine-tuning methods. We release the source code to support future research.