Abstract:Surrogate models provide fast alternatives to costly aerodynamic simulations and are extremely useful in design and optimization applications. This study proposes the use of a recent kernel-based neural surrogate, KHRONOS. In this work, we blend sparse high-fidelity (HF) data with low-fidelity (LF) information to predict aerodynamic fields under varying constraints in computational resources. Unlike traditional approaches, KHRONOS is built upon variational principles, interpolation theory, and tensor decomposition. These elements provide a mathematical basis for heavy pruning compared to dense neural networks. Using the AirfRANS dataset as a high-fidelity benchmark and NeuralFoil to generate low-fidelity counterparts, this work compares the performance of KHRONOS with three contemporary model architectures: a multilayer perceptron (MLP), a graph neural network (GNN), and a physics-informed neural network (PINN). We consider varying levels of high-fidelity data availability (0%, 10%, and 30%) and increasingly complex geometry parameterizations. These are used to predict the surface pressure coefficient distribution over the airfoil. Results indicate that, whilst all models eventually achieve comparable predictive accuracy, KHRONOS excels in resource-constrained conditions. In this domain, KHRONOS consistently requires orders of magnitude fewer trainable parameters and delivers much faster training and inference than contemporary dense neural networks at comparable accuracy. These findings highlight the potential of KHRONOS and similar architectures to balance accuracy and efficiency in multi-fidelity aerodynamic field prediction.
Abstract:Inverse design of heterogeneous material microstructures is a fundamentally ill-posed and famously computationally expensive problem. This is exacerbated by the high-dimensional design spaces associated with finely resolved images, multimodal input property streams, and a highly nonlinear forward physics. Whilst modern generative models excel at accurately modeling such complex forward behavior, most of them are not intrinsically structured to support fast, stable \emph{deterministic} inversion with a physics-informed bias. This work introduces Janus, a unified generative-predictive framework to address this problem. Janus couples a deep encoder-decoder architecture with a predictive KHRONOS head, a separable neural architecture. Topologically speaking, Janus learns a latent manifold simultaneously isometric for generative inversion and pruned for physical prediction; the joint objective inducing \emph{disentanglement} of the latent space. Janus is first validated on the MNIST dataset, demonstrating high-fidelity reconstruction, accurate classification and diverse generative inversion of all ten target classes. It is then applied to the inverse design of heterogeneous microstructures labeled with thermal conductivity. It achieves a forward prediction accuracy $R^2=0.98$ (2\% relative error) and sub-5\% pixelwise reconstruction error. Inverse solutions satisfy target properties to within $1\%$ relative error. Inverting a sweep through properties reveal smooth traversal of the latent manifold, and UMAP visualization confirms the emergence of a low-dimensional, disentangled manifold. By unifying prediction and generation within a single latent space, Janus enables real-time, physics-informed inverse microstructure generation at a lower computational cost typically associated with classical optimization-based approaches.
Abstract:This paper addresses the problem of Bangla hate speech identification, a socially impactful yet linguistically challenging task. As part of the "Bangla Multi-task Hate Speech Identification" shared task at the BLP Workshop, IJCNLP-AACL 2025, our team "Retriv" participated in all three subtasks: (1A) hate type classification, (1B) target group identification, and (1C) joint detection of type, severity, and target. For subtasks 1A and 1B, we employed a soft-voting ensemble of transformer models (BanglaBERT, MuRIL, IndicBERTv2). For subtask 1C, we trained three multitask variants and aggregated their predictions through a weighted voting ensemble. Our systems achieved micro-f1 scores of 72.75% (1A) and 72.69% (1B), and a weighted micro-f1 score of 72.62% (1C). On the shared task leaderboard, these corresponded to 9th, 10th, and 7th positions, respectively. These results highlight the promise of transformer ensembles and weighted multitask frameworks for advancing Bangla hate speech detection in low-resource contexts. We made experimental scripts publicly available for the community.
Abstract:Large Language Models (LLMs) have advanced the automated generation of code from natural language prompts. However, low-resource languages (LRLs) like Bangla remain underrepresented due to the limited availability of instruction-to-code datasets and evaluation benchmarks. To address this, the BLP Workshop at IJCNLP-AACL 2025 introduced a shared task on "Code Generation in Bangla". In this work, we propose a method that combines instruction prompting with a test-driven, feedback-guided iterative refinement process using a fine-tuned Qwen2.5-14B model. The model generates code from Bangla instructions, tests it against unit tests, and iteratively refines any failing outputs through three evaluation passes, using test feedback to guide each step. This approach helped our team "Retriv" to secure 2nd place in the shared task with a Pass@1 score of 0.934. The analysis highlights challenges in Bangla instruction understanding and Python code generation, emphasizing the need for targeted methods in LRLs. We made experimental scripts publicly available for the community.
Abstract:Contemporary models of high dimensional physical systems are constrained by the curse of dimensionality and a reliance on dense data. We introduce KHRONOS (Kernel Expansion Hierarchy for Reduced Order, Neural Optimized Surrogates), an AI framework for model based, model free and model inversion tasks. KHRONOS constructs continuously differentiable target fields with a hierarchical composition of per-dimension kernel expansions, which are tensorized into modes and then superposed. We evaluate KHRONOS on a canonical 2D, Poisson equation benchmark: across 16 to 512 degrees of freedom (DoFs), it obtained L2 square errors of 5e-4 down to 6e-10. This represents a 100 time gain over Kolmogorov Arnold Networks (which itself reports a 100 times improvement on MLPs/PINNs with 100 times fewer parameters) when controlling for the number of parameters. This also represents a 1e4 times improvement in L2 square error compared to standard linear FEM at comparable DoFs. Inference complexity is dominated by inner products, yielding sub-millisecond full-field predictions that scale to an arbitrary resolution. For inverse problems, KHRONOS facilitates rapid, iterative level set recovery in only a few forward evaluations, with sub-microsecond per sample latency. KHRONOS scalability, expressivity, and interpretability open new avenues in constrained edge computing, online control, computer vision, and beyond.




Abstract:A large number of approaches to Query Performance Prediction (QPP) have been proposed over the last two decades. As early as 2009, Hauff et al. [28] explored whether different QPP methods may be combined to improve prediction quality. Since then, significant research has been done both on QPP approaches, as well as their evaluation. This study revisits Hauff et al.s work to assess the reproducibility of their findings in the light of new prediction methods, evaluation metrics, and datasets. We expand the scope of the earlier investigation by: (i) considering post-retrieval methods, including supervised neural techniques (only pre-retrieval techniques were studied in [28]); (ii) using sMARE for evaluation, in addition to the traditional correlation coefficients and RMSE; and (iii) experimenting with additional datasets (Clueweb09B and TREC DL). Our results largely support previous claims, but we also present several interesting findings. We interpret these findings by taking a more nuanced look at the correlation between QPP methods, examining whether they capture diverse information or rely on overlapping factors.
Abstract:The evolution of artificial intelligence (AI) and neural network theories has revolutionized the way software is programmed, shifting from a hard-coded series of codes to a vast neural network. However, this transition in engineering software has faced challenges such as data scarcity, multi-modality of data, low model accuracy, and slow inference. Here, we propose a new network based on interpolation theories and tensor decomposition, the interpolating neural network (INN). Instead of interpolating training data, a common notion in computer science, INN interpolates interpolation points in the physical space whose coordinates and values are trainable. It can also extrapolate if the interpolation points reside outside of the range of training data and the interpolation functions have a larger support domain. INN features orders of magnitude fewer trainable parameters, faster training, a smaller memory footprint, and higher model accuracy compared to feed-forward neural networks (FFNN) or physics-informed neural networks (PINN). INN is poised to usher in Engineering Software 2.0, a unified neural network that spans various domains of space, time, parameters, and initial/boundary conditions. This has previously been computationally prohibitive due to the exponentially growing number of trainable parameters, easily exceeding the parameter size of ChatGPT, which is over 1 trillion. INN addresses this challenge by leveraging tensor decomposition and tensor product, with adaptable network architecture.




Abstract:Deep Learning and Machine Learning based models have become extremely popular in text processing and information retrieval. However, the non-linear structures present inside the networks make these models largely inscrutable. A significant body of research has focused on increasing the transparency of these models. This article provides a broad overview of research on the explainability and interpretability of natural language processing and information retrieval methods. More specifically, we survey approaches that have been applied to explain word embeddings, sequence modeling, attention modules, transformers, BERT, and document ranking. The concluding section suggests some possible directions for future research on this topic.
Abstract:Recent advances in operator learning theory have improved our knowledge about learning maps between infinite dimensional spaces. However, for large-scale engineering problems such as concurrent multiscale simulation for mechanical properties, the training cost for the current operator learning methods is very high. The article presents a thorough analysis on the mathematical underpinnings of the operator learning paradigm and proposes a kernel learning method that maps between function spaces. We first provide a survey of modern kernel and operator learning theory, as well as discuss recent results and open problems. From there, the article presents an algorithm to how we can analytically approximate the piecewise constant functions on R for operator learning. This implies the potential feasibility of success of neural operators on clustered functions. Finally, a k-means clustered domain on the basis of a mechanistic response is considered and the Lippmann-Schwinger equation for micro-mechanical homogenization is solved. The article briefly discusses the mathematics of previous kernel learning methods and some preliminary results with those methods. The proposed kernel operator learning method uses graph kernel networks to come up with a mechanistic reduced order method for multiscale homogenization.




Abstract:Automatic Image Captioning is the never-ending effort of creating syntactically and validating the accuracy of textual descriptions of an image in natural language with context. The encoder-decoder structure used throughout existing Bengali Image Captioning (BIC) research utilized abstract image feature vectors as the encoder's input. We propose a novel transformer-based architecture with an attention mechanism with a pre-trained ResNet-101 model image encoder for feature extraction from images. Experiments demonstrate that the language decoder in our technique captures fine-grained information in the caption and, then paired with image features, produces accurate and diverse captions on the BanglaLekhaImageCaptions dataset. Our approach outperforms all existing Bengali Image Captioning work and sets a new benchmark by scoring 0.694 on BLEU-1, 0.630 on BLEU-2, 0.582 on BLEU-3, and 0.337 on METEOR.