Abstract:Surrogate models provide fast alternatives to costly aerodynamic simulations and are extremely useful in design and optimization applications. This study proposes the use of a recent kernel-based neural surrogate, KHRONOS. In this work, we blend sparse high-fidelity (HF) data with low-fidelity (LF) information to predict aerodynamic fields under varying constraints in computational resources. Unlike traditional approaches, KHRONOS is built upon variational principles, interpolation theory, and tensor decomposition. These elements provide a mathematical basis for heavy pruning compared to dense neural networks. Using the AirfRANS dataset as a high-fidelity benchmark and NeuralFoil to generate low-fidelity counterparts, this work compares the performance of KHRONOS with three contemporary model architectures: a multilayer perceptron (MLP), a graph neural network (GNN), and a physics-informed neural network (PINN). We consider varying levels of high-fidelity data availability (0%, 10%, and 30%) and increasingly complex geometry parameterizations. These are used to predict the surface pressure coefficient distribution over the airfoil. Results indicate that, whilst all models eventually achieve comparable predictive accuracy, KHRONOS excels in resource-constrained conditions. In this domain, KHRONOS consistently requires orders of magnitude fewer trainable parameters and delivers much faster training and inference than contemporary dense neural networks at comparable accuracy. These findings highlight the potential of KHRONOS and similar architectures to balance accuracy and efficiency in multi-fidelity aerodynamic field prediction.
Abstract:Inverse design of heterogeneous material microstructures is a fundamentally ill-posed and famously computationally expensive problem. This is exacerbated by the high-dimensional design spaces associated with finely resolved images, multimodal input property streams, and a highly nonlinear forward physics. Whilst modern generative models excel at accurately modeling such complex forward behavior, most of them are not intrinsically structured to support fast, stable \emph{deterministic} inversion with a physics-informed bias. This work introduces Janus, a unified generative-predictive framework to address this problem. Janus couples a deep encoder-decoder architecture with a predictive KHRONOS head, a separable neural architecture. Topologically speaking, Janus learns a latent manifold simultaneously isometric for generative inversion and pruned for physical prediction; the joint objective inducing \emph{disentanglement} of the latent space. Janus is first validated on the MNIST dataset, demonstrating high-fidelity reconstruction, accurate classification and diverse generative inversion of all ten target classes. It is then applied to the inverse design of heterogeneous microstructures labeled with thermal conductivity. It achieves a forward prediction accuracy $R^2=0.98$ (2\% relative error) and sub-5\% pixelwise reconstruction error. Inverse solutions satisfy target properties to within $1\%$ relative error. Inverting a sweep through properties reveal smooth traversal of the latent manifold, and UMAP visualization confirms the emergence of a low-dimensional, disentangled manifold. By unifying prediction and generation within a single latent space, Janus enables real-time, physics-informed inverse microstructure generation at a lower computational cost typically associated with classical optimization-based approaches.
Abstract:Contemporary models of high dimensional physical systems are constrained by the curse of dimensionality and a reliance on dense data. We introduce KHRONOS (Kernel Expansion Hierarchy for Reduced Order, Neural Optimized Surrogates), an AI framework for model based, model free and model inversion tasks. KHRONOS constructs continuously differentiable target fields with a hierarchical composition of per-dimension kernel expansions, which are tensorized into modes and then superposed. We evaluate KHRONOS on a canonical 2D, Poisson equation benchmark: across 16 to 512 degrees of freedom (DoFs), it obtained L2 square errors of 5e-4 down to 6e-10. This represents a 100 time gain over Kolmogorov Arnold Networks (which itself reports a 100 times improvement on MLPs/PINNs with 100 times fewer parameters) when controlling for the number of parameters. This also represents a 1e4 times improvement in L2 square error compared to standard linear FEM at comparable DoFs. Inference complexity is dominated by inner products, yielding sub-millisecond full-field predictions that scale to an arbitrary resolution. For inverse problems, KHRONOS facilitates rapid, iterative level set recovery in only a few forward evaluations, with sub-microsecond per sample latency. KHRONOS scalability, expressivity, and interpretability open new avenues in constrained edge computing, online control, computer vision, and beyond.