Inverse design of heterogeneous material microstructures is a fundamentally ill-posed and famously computationally expensive problem. This is exacerbated by the high-dimensional design spaces associated with finely resolved images, multimodal input property streams, and a highly nonlinear forward physics. Whilst modern generative models excel at accurately modeling such complex forward behavior, most of them are not intrinsically structured to support fast, stable \emph{deterministic} inversion with a physics-informed bias. This work introduces Janus, a unified generative-predictive framework to address this problem. Janus couples a deep encoder-decoder architecture with a predictive KHRONOS head, a separable neural architecture. Topologically speaking, Janus learns a latent manifold simultaneously isometric for generative inversion and pruned for physical prediction; the joint objective inducing \emph{disentanglement} of the latent space. Janus is first validated on the MNIST dataset, demonstrating high-fidelity reconstruction, accurate classification and diverse generative inversion of all ten target classes. It is then applied to the inverse design of heterogeneous microstructures labeled with thermal conductivity. It achieves a forward prediction accuracy $R^2=0.98$ (2\% relative error) and sub-5\% pixelwise reconstruction error. Inverse solutions satisfy target properties to within $1\%$ relative error. Inverting a sweep through properties reveal smooth traversal of the latent manifold, and UMAP visualization confirms the emergence of a low-dimensional, disentangled manifold. By unifying prediction and generation within a single latent space, Janus enables real-time, physics-informed inverse microstructure generation at a lower computational cost typically associated with classical optimization-based approaches.