Abstract:Multi-Label Online Continual Learning (MOCL) requires models to learn continuously from endless multi-label data streams, facing complex challenges including persistent catastrophic forgetting, potential missing labels, and uncontrollable imbalanced class distributions. While existing MOCL methods attempt to address these challenges through various techniques, \textit{they all overlook label-specific region identifying and feature learning} - a fundamental solution rooted in multi-label learning but challenging to achieve in the online setting with incremental and partial supervision. To this end, we first leverage the inherent structural information of input data to evaluate and verify the innate localization capability of different pre-trained models. Then, we propose CUTER (CUT-out-and-Experience-Replay), a simple yet versatile strategy that provides fine-grained supervision signals by further identifying, strengthening and cutting out label-specific regions for efficient experience replay. It not only enables models to simultaneously address catastrophic forgetting, missing labels, and class imbalance challenges, but also serves as an orthogonal solution that seamlessly integrates with existing approaches. Extensive experiments on multiple multi-label image benchmarks demonstrate the superiority of our proposed method. The code is available at \href{https://github.com/wxr99/Cut-Replay}{https://github.com/wxr99/Cut-Replay}
Abstract:Recent studies have verified that semi-supervised learning (SSL) is vulnerable to data poisoning backdoor attacks. Even a tiny fraction of contaminated training data is sufficient for adversaries to manipulate up to 90\% of the test outputs in existing SSL methods. Given the emerging threat of backdoor attacks designed for SSL, this work aims to protect SSL against such risks, marking it as one of the few known efforts in this area. Specifically, we begin by identifying that the spurious correlations between the backdoor triggers and the target class implanted by adversaries are the primary cause of manipulated model predictions during the test phase. To disrupt these correlations, we utilize three key techniques: Gaussian Filter, complementary learning and trigger mix-up, which collectively filter, obstruct and dilute the influence of backdoor attacks in both data pre-processing and feature learning. Experimental results demonstrate that our proposed method, Backdoor Invalidator (BI), significantly reduces the average attack success rate from 84.7\% to 1.8\% across different state-of-the-art backdoor attacks. It is also worth mentioning that BI does not sacrifice accuracy on clean data and is supported by a theoretical guarantee of its generalization capability.