Abstract:Adapter-based Federated Large Language Models (FedLLMs) are widely adopted to reduce the computational, storage, and communication overhead of full-parameter fine-tuning for web-scale applications while preserving user privacy. By freezing the backbone and training only compact low-rank adapters, these methods appear to limit gradient leakage and thwart existing Gradient Inversion Attacks (GIAs). Contrary to this assumption, we show that low-rank adapters create new, exploitable leakage channels. We propose the Unordered-word-bag-based Text Reconstruction (UTR) attack, a novel GIA tailored to the unique structure of adapter-based FedLLMs. UTR overcomes three core challenges: low-dimensional gradients, frozen backbones, and combinatorially large reconstruction spaces by: (i) inferring token presence from attention patterns in frozen layers, (ii) performing sentence-level inversion within the low-rank subspace of adapter gradients, and (iii) enforcing semantic coherence through constrained greedy decoding guided by language priors. Extensive experiments across diverse models (GPT2-Large, BERT, Qwen2.5-7B) and datasets (CoLA, SST-2, Rotten Tomatoes) demonstrate that UTR achieves near-perfect reconstruction accuracy (ROUGE-1/2 > 99), even with large batch size settings where prior GIAs fail completely. Our results reveal a fundamental tension between parameter efficiency and privacy in FedLLMs, challenging the prevailing belief that lightweight adaptation inherently enhances security. Our code and data are available at https://github.com/shwksnshwowk-wq/GIA.
Abstract:The integration of Large Language Models (LLMs) and Federated Learning (FL) presents a promising solution for joint training on distributed data while preserving privacy and addressing data silo issues. However, this emerging field, known as Federated Large Language Models (FLLM), faces significant challenges, including communication and computation overheads, heterogeneity, privacy and security concerns. Current research has primarily focused on the feasibility of FLLM, but future trends are expected to emphasize enhancing system robustness and security. This paper provides a comprehensive review of the latest advancements in FLLM, examining challenges from four critical perspectives: feasibility, robustness, security, and future directions. We present an exhaustive survey of existing studies on FLLM feasibility, introduce methods to enhance robustness in the face of resource, data, and task heterogeneity, and analyze novel risks associated with this integration, including privacy threats and security challenges. We also review the latest developments in defense mechanisms and explore promising future research directions, such as few-shot learning, machine unlearning, and IP protection. This survey highlights the pressing need for further research to enhance system robustness and security while addressing the unique challenges posed by the integration of FL and LLM.