Abstract:The utilisation of Plug-and-Play (PnP) priors in inverse problems has become increasingly prominent in recent years. This preference is based on the mathematical equivalence between the general proximal operator and the regularised denoiser, facilitating the adaptation of various off-the-shelf denoiser priors to a wide range of inverse problems. However, existing PnP models predominantly rely on pre-trained denoisers using large datasets. In this work, we introduce Single-Shot PnP methods (SS-PnP), shifting the focus to solving inverse problems with minimal data. First, we integrate Single-Shot proximal denoisers into iterative methods, enabling training with single instances. Second, we propose implicit neural priors based on a novel function that preserves relevant frequencies to capture fine details while avoiding the issue of vanishing gradients. We demonstrate, through extensive numerical and visual experiments, that our method leads to better approximations.
Abstract:In computation pathology, the pyramid structure of gigapixel Whole Slide Images (WSIs) has recently been studied for capturing various information from individual cell interactions to tissue microenvironments. This hierarchical structure is believed to be beneficial for cancer diagnosis and prognosis tasks. However, most previous hierarchical WSI analysis works (1) only characterize local or global correlations within the WSI pyramids and (2) use only unidirectional interaction between different resolutions, leading to an incomplete picture of WSI pyramids. To this end, this paper presents a novel Hierarchical Interaction Graph-Transformer (i.e., HIGT) for WSI analysis. With Graph Neural Network and Transformer as the building commons, HIGT can learn both short-range local information and long-range global representation of the WSI pyramids. Considering that the information from different resolutions is complementary and can benefit each other during the learning process, we further design a novel Bidirectional Interaction block to establish communication between different levels within the WSI pyramids. Finally, we aggregate both coarse-grained and fine-grained features learned from different levels together for slide-level prediction. We evaluate our methods on two public WSI datasets from TCGA projects, i.e., kidney carcinoma (KICA) and esophageal carcinoma (ESCA). Experimental results show that our HIGT outperforms both hierarchical and non-hierarchical state-of-the-art methods on both tumor subtyping and staging tasks.
Abstract:Whole slide image (WSI) analysis has become increasingly important in the medical imaging community, enabling automated and objective diagnosis, prognosis, and therapeutic-response prediction. However, in clinical practice, the ever-evolving environment hamper the utility of WSI analysis models. In this paper, we propose the FIRST continual learning framework for WSI analysis, named ConSlide, to tackle the challenges of enormous image size, utilization of hierarchical structure, and catastrophic forgetting by progressive model updating on multiple sequential datasets. Our framework contains three key components. The Hierarchical Interaction Transformer (HIT) is proposed to model and utilize the hierarchical structural knowledge of WSI. The Breakup-Reorganize (BuRo) rehearsal method is developed for WSI data replay with efficient region storing buffer and WSI reorganizing operation. The asynchronous updating mechanism is devised to encourage the network to learn generic and specific knowledge respectively during the replay stage, based on a nested cross-scale similarity learning (CSSL) module. We evaluated the proposed ConSlide on four public WSI datasets from TCGA projects. It performs best over other state-of-the-art methods with a fair WSI-based continual learning setting and achieves a better trade-off of the overall performance and forgetting on previous task
Abstract:Empirical risk minimization (ERM) is a fundamental machine learning paradigm. However, its generalization ability is limited in various tasks. In this paper, we devise Dummy Risk Minimization (DuRM), a frustratingly easy and general technique to improve the generalization of ERM. DuRM is extremely simple to implement: just enlarging the dimension of the output logits and then optimizing using standard gradient descent. Moreover, we validate the efficacy of DuRM on both theoretical and empirical analysis. Theoretically, we show that DuRM derives greater variance of the gradient, which facilitates model generalization by observing better flat local minima. Empirically, we conduct evaluations of DuRM across different datasets, modalities, and network architectures on diverse tasks, including conventional classification, semantic segmentation, out-of-distribution generalization, adverserial training, and long-tailed recognition. Results demonstrate that DuRM could consistently improve the performance under all tasks with an almost free lunch manner. Furthermore, we show that DuRM is compatible with existing generalization techniques and we discuss possible limitations. We hope that DuRM could trigger new interest in the fundamental research on risk minimization.
Abstract:Breast cancer is a major cause of cancer death among women, emphasising the importance of early detection for improved treatment outcomes and quality of life. Mammography, the primary diagnostic imaging test, poses challenges due to the high variability and patterns in mammograms. Double reading of mammograms is recommended in many screening programs to improve diagnostic accuracy but increases radiologists' workload. Researchers explore Machine Learning models to support expert decision-making. Stand-alone models have shown comparable or superior performance to radiologists, but some studies note decreased sensitivity with multiple datasets, indicating the need for high generalisation and robustness models. This work devises MammoDG, a novel deep-learning framework for generalisable and reliable analysis of cross-domain multi-center mammography data. MammoDG leverages multi-view mammograms and a novel contrastive mechanism to enhance generalisation capabilities. Extensive validation demonstrates MammoDG's superiority, highlighting the critical importance of domain generalisation for trustworthy mammography analysis in imaging protocol variations.
Abstract:Alzheimer's disease prognosis is critical for early Mild Cognitive Impairment patients for timely treatment to improve the patient's quality of life. Whilst existing prognosis techniques demonstrate potential results, they are highly limited in terms of using a single modality. Most importantly, they fail in considering a key element for prognosis: not all features extracted at the current moment may contribute to the prognosis prediction several years later. To address the current drawbacks of the literature, we propose a novel hypergraph framework based on an information bottleneck strategy (HGIB). Firstly, our framework seeks to discriminate irrelevant information, and therefore, solely focus on harmonising relevant information for future MCI conversion prediction e.g., two years later). Secondly, our model simultaneously accounts for multi-modal data based on imaging and non-imaging modalities. HGIB uses a hypergraph structure to represent the multi-modality data and accounts for various data modality types. Thirdly, the key of our model is based on a new optimisation scheme. It is based on modelling the principle of information bottleneck into loss functions that can be integrated into our hypergraph neural network. We demonstrate, through extensive experiments on ADNI, that our proposed HGIB framework outperforms existing state-of-the-art hypergraph neural networks for Alzheimer's disease prognosis. We showcase our model even under fewer labels. Finally, we further support the robustness and generalisation capabilities of our framework under both topological and feature perturbations.
Abstract:Current point cloud segmentation architectures suffer from limited long-range feature modeling, as they mostly rely on aggregating information with local neighborhoods. Furthermore, in order to learn point features at multiple scales, most methods utilize a data-agnostic sampling approach to decrease the number of points after each stage. Such sampling methods, however, often discard points for small objects in the early stages, leading to inadequate feature learning. We believe these issues are can be mitigated by introducing explicit geometry clues as guidance. To this end, we propose GeoSpark, a Plug-in module that incorporates Geometry clues into the network to Spark up feature learning and downsampling. GeoSpark can be easily integrated into various backbones. For feature aggregation, it improves feature modeling by allowing the network to learn from both local points and neighboring geometry partitions, resulting in an enlarged data-tailored receptive field. Additionally, GeoSpark utilizes geometry partition information to guide the downsampling process, where points with unique features are preserved while redundant points are fused, resulting in better preservation of key points throughout the network. We observed consistent improvements after adding GeoSpark to various backbones including PointNet++, KPConv, and PointTransformer. Notably, when integrated with Point Transformer, our GeoSpark module achieves a 74.7% mIoU on the ScanNetv2 dataset (4.1% improvement) and 71.5% mIoU on the S3DIS Area 5 dataset (1.1% improvement), ranking top on both benchmarks. Code and models will be made publicly available.
Abstract:Whole slide image (WSI) has been widely used to assist automated diagnosis under the deep learning fields. However, most previous works only discuss the SINGLE task setting which is not aligned with real clinical setting, where pathologists often conduct multiple diagnosis tasks simultaneously. Also, it is commonly recognized that the multi-task learning paradigm can improve learning efficiency by exploiting commonalities and differences across multiple tasks. To this end, we present a novel multi-task framework (i.e., MulGT) for WSI analysis by the specially designed Graph-Transformer equipped with Task-aware Knowledge Injection and Domain Knowledge-driven Graph Pooling modules. Basically, with the Graph Neural Network and Transformer as the building commons, our framework is able to learn task-agnostic low-level local information as well as task-specific high-level global representation. Considering that different tasks in WSI analysis depend on different features and properties, we also design a novel Task-aware Knowledge Injection module to transfer the task-shared graph embedding into task-specific feature spaces to learn more accurate representation for different tasks. Further, we elaborately design a novel Domain Knowledge-driven Graph Pooling module for each task to improve both the accuracy and robustness of different tasks by leveraging different diagnosis patterns of multiple tasks. We evaluated our method on two public WSI datasets from TCGA projects, i.e., esophageal carcinoma and kidney carcinoma. Experimental results show that our method outperforms single-task counterparts and the state-of-theart methods on both tumor typing and staging tasks.
Abstract:Traffic flow analysis is revolutionising traffic management. Qualifying traffic flow data, traffic control bureaus could provide drivers with real-time alerts, advising the fastest routes and therefore optimising transportation logistics and reducing congestion. The existing traffic flow datasets have two major limitations. They feature a limited number of classes, usually limited to one type of vehicle, and the scarcity of unlabelled data. In this paper, we introduce a new benchmark traffic flow image dataset called TrafficCAM. Our dataset distinguishes itself by two major highlights. Firstly, TrafficCAM provides both pixel-level and instance-level semantic labelling along with a large range of types of vehicles and pedestrians. It is composed of a large and diverse set of video sequences recorded in streets from eight Indian cities with stationary cameras. Secondly, TrafficCAM aims to establish a new benchmark for developing fully-supervised tasks, and importantly, semi-supervised learning techniques. It is the first dataset that provides a vast amount of unlabelled data, helping to better capture traffic flow qualification under a low cost annotation requirement. More precisely, our dataset has 4,402 image frames with semantic and instance annotations along with 59,944 unlabelled image frames. We validate our new dataset through a large and comprehensive range of experiments on several state-of-the-art approaches under four different settings: fully-supervised semantic and instance segmentation, and semi-supervised semantic and instance segmentation tasks. Our benchmark dataset will be released.
Abstract:Learning medical visual representations directly from paired radiology reports has become an emerging topic in representation learning. However, existing medical image-text joint learning methods are limited by instance or local supervision analysis, ignoring disease-level semantic correspondences. In this paper, we present a novel Multi-Granularity Cross-modal Alignment (MGCA) framework for generalized medical visual representation learning by harnessing the naturally exhibited semantic correspondences between medical image and radiology reports at three different levels, i.e., pathological region-level, instance-level, and disease-level. Specifically, we first incorporate the instance-wise alignment module by maximizing the agreement between image-report pairs. Further, for token-wise alignment, we introduce a bidirectional cross-attention strategy to explicitly learn the matching between fine-grained visual tokens and text tokens, followed by contrastive learning to align them. More important, to leverage the high-level inter-subject relationship semantic (e.g., disease) correspondences, we design a novel cross-modal disease-level alignment paradigm to enforce the cross-modal cluster assignment consistency. Extensive experimental results on seven downstream medical image datasets covering image classification, object detection, and semantic segmentation tasks demonstrate the stable and superior performance of our framework.