Abstract:Learning a general whole-body controller for humanoid robots remains challenging due to the diversity of motion distributions, the difficulty of fast adaptation, and the need for robust balance in high-dynamic scenarios. Existing approaches often require task-specific training or suffer from performance degradation when adapting to new motions. In this paper, we present FAST, a general humanoid whole-body control framework that enables Fast Adaptation and Stable Motion Tracking. FAST introduces Parseval-Guided Residual Policy Adaptation, which learns a lightweight delta action policy under orthogonality and KL constraints, enabling efficient adaptation to out-of-distribution motions while mitigating catastrophic forgetting. To further improve physical robustness, we propose Center-of-Mass-Aware Control, which incorporates CoM-related observations and objectives to enhance balance when tracking challenging reference motions. Extensive experiments in simulation and real-world deployment demonstrate that FAST consistently outperforms state-of-the-art baselines in robustness, adaptation efficiency, and generalization.