Abstract:Lightweight Large Language Models (LwLLMs) are reduced-parameter, optimized models designed to run efficiently on consumer-grade hardware, offering significant advantages in resource efficiency, cost-effectiveness, and data privacy. However, these models often struggle with limited inference and reasoning capabilities, which restrict their performance on complex tasks and limit their practical applicability. Moreover, existing prompt optimization methods typically rely on extensive manual effort or the meta-cognitive abilities of state-of-the-art LLMs, making them less effective for LwLLMs. To address these challenges, we introduce DeBoP, a new Direct Behavior Optimization Paradigm, original from the Chain-of-Thought (CoT) prompting technique. Unlike CoT Prompting, DeBoP is an automatic optimization method, which focuses on the optimization directly on the behavior of LwLLMs. In particular, DeBoP transforms the optimization of complex prompts into the optimization of discrete, quantifiable execution sequences using a gradient-free Monte Carlo Tree Search. We evaluate DeBoP on seven challenging tasks where state-of-the-art LLMs excel but LwLLMs generally underperform. Experimental results demonstrate that DeBoP significantly outperforms recent prompt optimization methods on most tasks. In particular, DeBoP-optimized LwLLMs surpass GPT-3.5 on most tasks while reducing computational time by approximately 60% compared to other automatic prompt optimization methods.
Abstract:The rapid development of Large Language Models (LLMs) has brought remarkable generative capabilities across diverse tasks. However, despite the impressive achievements, these models still have numerous security vulnerabilities, particularly when faced with jailbreak attacks. Therefore, by investigating jailbreak attacks, we can uncover hidden weaknesses in LLMs and guide us in developing more robust defense mechanisms to fortify their security. In this paper, we further explore the boundary of jailbreak attacks on LLMs and propose Analyzing-based Jailbreak (ABJ). This effective jailbreak attack method takes advantage of LLMs' growing analyzing and reasoning capability and reveals their underlying vulnerabilities when facing analysis-based tasks. We conduct a detailed evaluation of ABJ across various open-source and closed-source LLMs, which achieves 94.8% Attack Success Rate (ASR) and 1.06 Attack Efficiency (AE) on GPT-4-turbo-0409, demonstrating state-of-the-art attack effectiveness and efficiency. Our research highlights the importance of prioritizing and enhancing the safety of LLMs to mitigate the risks of misuse.