Abstract:Diffusion models have shown remarkable capacity in image synthesis based on their U-shaped architecture and convolutional neural networks (CNN) as basic blocks. The locality of the convolution operation in CNN may limit the model's ability to understand long-range semantic information. To address this issue, we propose Yuan-TecSwin, a text-conditioned diffusion model with Swin-transformer in this work. The Swin-transformer blocks take the place of CNN blocks in the encoder and decoder, to improve the non-local modeling ability in feature extraction and image restoration. The text-image alignment is improved with a well-chosen text encoder, effective utilization of text embedding, and careful design in the incorporation of text condition. Using an adapted time step to search in different diffusion stages, inference performance is further improved by 10%. Yuan-TecSwin achieves the state-of-the-art FID score of 1.37 on ImageNet generation benchmark, without any additional models at different denoising stages. In a side-by-side comparison, we find it difficult for human interviewees to tell the model-generated images from the human-painted ones.




Abstract:In this work, we develop and release Yuan 2.0, a series of large language models with parameters ranging from 2.1 billion to 102.6 billion. The Localized Filtering-based Attention (LFA) is introduced to incorporate prior knowledge of local dependencies of natural language into Attention. A data filtering and generating system is presented to build pre-training and fine-tuning dataset in high quality. A distributed training method with non-uniform pipeline parallel, data parallel, and optimizer parallel is proposed, which greatly reduces the bandwidth requirements of intra-node communication, and achieves good performance in large-scale distributed training. Yuan 2.0 models display impressive ability in code generation, math problem-solving, and chatting compared with existing models. The latest version of YUAN 2.0, including model weights and source code, is accessible at Github.