Abstract:Traditional video retrieval benchmarks focus on matching precise descriptions to closed video pools, failing to reflect real-world searches characterized by fuzzy, multi-dimensional memories on the open web. We present \textbf{RVMS-Bench}, a comprehensive system for evaluating real-world video memory search. It consists of \textbf{1,440 samples} spanning \textbf{20 diverse categories} and \textbf{four duration groups}, sourced from \textbf{real-world open-web videos}. RVMS-Bench utilizes a hierarchical description framework encompassing \textbf{Global Impression, Key Moment, Temporal Context, and Auditory Memory} to mimic realistic multi-dimensional search cues, with all samples strictly verified via a human-in-the-loop protocol. We further propose \textbf{RACLO}, an agentic framework that employs abductive reasoning to simulate the human ``Recall-Search-Verify'' cognitive process, effectively addressing the challenge of searching for videos via fuzzy memories in the real world. Experiments reveal that existing MLLMs still demonstrate insufficient capabilities in real-world Video Retrieval and Moment Localization based on fuzzy memories. We believe this work will facilitate the advancement of video retrieval robustness in real-world unstructured scenarios.
Abstract:In recent years, large language models (LLMs) have made rapid progress in information retrieval, yet existing research has mainly focused on text or static multimodal settings. Open-domain video shot retrieval, which involves richer temporal structure and more complex semantics, still lacks systematic benchmarks and analysis. To fill this gap, we introduce ShotFinder, a benchmark that formalizes editing requirements as keyframe-oriented shot descriptions and introduces five types of controllable single-factor constraints: Temporal order, Color, Visual style, Audio, and Resolution. We curate 1,210 high-quality samples from YouTube across 20 thematic categories, using large models for generation with human verification. Based on the benchmark, we propose ShotFinder, a text-driven three-stage retrieval and localization pipeline: (1) query expansion via video imagination, (2) candidate video retrieval with a search engine, and (3) description-guided temporal localization. Experiments on multiple closed-source and open-source models reveal a significant gap to human performance, with clear imbalance across constraints: temporal localization is relatively tractable, while color and visual style remain major challenges. These results reveal that open-domain video shot retrieval is still a critical capability that multimodal large models have yet to overcome.