Alert button
Picture for Saurabh Adya

Saurabh Adya

Alert button

eDKM: An Efficient and Accurate Train-time Weight Clustering for Large Language Models

Sep 13, 2023
Minsik Cho, Keivan A. Vahid, Qichen Fu, Saurabh Adya, Carlo C Del Mundo, Mohammad Rastegari, Devang Naik, Peter Zatloukal

Since Large Language Models or LLMs have demonstrated high-quality performance on many complex language tasks, there is a great interest in bringing these LLMs to mobile devices for faster responses and better privacy protection. However, the size of LLMs (i.e., billions of parameters) requires highly effective compression to fit into storage-limited devices. Among many compression techniques, weight-clustering, a form of non-linear quantization, is one of the leading candidates for LLM compression, and supported by modern smartphones. Yet, its training overhead is prohibitively significant for LLM fine-tuning. Especially, Differentiable KMeans Clustering, or DKM, has shown the state-of-the-art trade-off between compression ratio and accuracy regression, but its large memory complexity makes it nearly impossible to apply to train-time LLM compression. In this paper, we propose a memory-efficient DKM implementation, eDKM powered by novel techniques to reduce the memory footprint of DKM by orders of magnitudes. For a given tensor to be saved on CPU for the backward pass of DKM, we compressed the tensor by applying uniquification and sharding after checking if there is no duplicated tensor previously copied to CPU. Our experimental results demonstrate that \prjname can fine-tune and compress a pretrained LLaMA 7B model from 12.6 GB to 2.5 GB (3bit/weight) with the Alpaca dataset by reducing the train-time memory footprint of a decoder layer by 130$\times$, while delivering good accuracy on broader LLM benchmarks (i.e., 77.7% for PIQA, 66.1% for Winograde, and so on).

* preprint 
Viaarxiv icon

Efficient Multimodal Neural Networks for Trigger-less Voice Assistants

May 20, 2023
Sai Srujana Buddi, Utkarsh Oggy Sarawgi, Tashweena Heeramun, Karan Sawnhey, Ed Yanosik, Saravana Rathinam, Saurabh Adya

Figure 1 for Efficient Multimodal Neural Networks for Trigger-less Voice Assistants
Figure 2 for Efficient Multimodal Neural Networks for Trigger-less Voice Assistants
Figure 3 for Efficient Multimodal Neural Networks for Trigger-less Voice Assistants
Figure 4 for Efficient Multimodal Neural Networks for Trigger-less Voice Assistants

The adoption of multimodal interactions by Voice Assistants (VAs) is growing rapidly to enhance human-computer interactions. Smartwatches have now incorporated trigger-less methods of invoking VAs, such as Raise To Speak (RTS), where the user raises their watch and speaks to VAs without an explicit trigger. Current state-of-the-art RTS systems rely on heuristics and engineered Finite State Machines to fuse gesture and audio data for multimodal decision-making. However, these methods have limitations, including limited adaptability, scalability, and induced human biases. In this work, we propose a neural network based audio-gesture multimodal fusion system that (1) Better understands temporal correlation between audio and gesture data, leading to precise invocations (2) Generalizes to a wide range of environments and scenarios (3) Is lightweight and deployable on low-power devices, such as smartwatches, with quick launch times (4) Improves productivity in asset development processes.

Viaarxiv icon

PDP: Parameter-free Differentiable Pruning is All You Need

May 18, 2023
Minsik Cho, Saurabh Adya, Devang Naik

Figure 1 for PDP: Parameter-free Differentiable Pruning is All You Need
Figure 2 for PDP: Parameter-free Differentiable Pruning is All You Need
Figure 3 for PDP: Parameter-free Differentiable Pruning is All You Need
Figure 4 for PDP: Parameter-free Differentiable Pruning is All You Need

DNN pruning is a popular way to reduce the size of a model, improve the inference latency, and minimize the power consumption on DNN accelerators. However, existing approaches might be too complex, expensive or ineffective to apply to a variety of vision/language tasks, DNN architectures and to honor structured pruning constraints. In this paper, we propose an efficient yet effective train-time pruning scheme, Parameter-free Differentiable Pruning (PDP), which offers state-of-the-art qualities in model size, accuracy, and training cost. PDP uses a dynamic function of weights during training to generate soft pruning masks for the weights in a parameter-free manner for a given pruning target. While differentiable, the simplicity and efficiency of PDP make it universal enough to deliver state-of-the-art random/structured/channel pruning results on various vision and natural language tasks. For example, for MobileNet-v1, PDP can achieve 68.2% top-1 ImageNet1k accuracy at 86.6% sparsity, which is 1.7% higher accuracy than those from the state-of-the-art algorithms. Also, PDP yields over 83.1% accuracy on Multi-Genre Natural Language Inference with 90% sparsity for BERT, while the next best from the existing techniques shows 81.5% accuracy. In addition, PDP can be applied to structured pruning, such as N:M pruning and channel pruning. For 1:4 structured pruning of ResNet18, PDP improved the top-1 ImageNet1k accuracy by over 3.6% over the state-of-the-art. For channel pruning of ResNet50, PDP reduced the top-1 ImageNet1k accuracy by 0.6% from the state-of-the-art.

Viaarxiv icon

R^2: Range Regularization for Model Compression and Quantization

Mar 14, 2023
Arnav Kundu, Chungkuk Yoo, Srijan Mishra, Minsik Cho, Saurabh Adya

Figure 1 for R^2: Range Regularization for Model Compression and Quantization
Figure 2 for R^2: Range Regularization for Model Compression and Quantization
Figure 3 for R^2: Range Regularization for Model Compression and Quantization
Figure 4 for R^2: Range Regularization for Model Compression and Quantization

Model parameter regularization is a widely used technique to improve generalization, but also can be used to shape the weight distributions for various purposes. In this work, we shed light on how weight regularization can assist model quantization and compression techniques, and then propose range regularization (R^2) to further boost the quality of model optimization by focusing on the outlier prevention. By effectively regulating the minimum and maximum weight values from a distribution, we mold the overall distribution into a tight shape so that model compression and quantization techniques can better utilize their limited numeric representation powers. We introduce L-inf regularization, its extension margin regularization and a new soft-min-max regularization to be used as a regularization loss during full-precision model training. Coupled with state-of-the-art quantization and compression techniques, models trained with R^2 perform better on an average, specifically at lower bit weights with 16x compression ratio. We also demonstrate that R^2 helps parameter constrained models like MobileNetV1 achieve significant improvement of around 8% for 2 bit quantization and 7% for 1 bit compression.

Viaarxiv icon

Improving Voice Trigger Detection with Metric Learning

Apr 05, 2022
Prateeth Nayak, Takuya Higuchi, Anmol Gupta, Shivesh Ranjan, Stephen Shum, Siddharth Sigtia, Erik Marchi, Varun Lakshminarasimhan, Minsik Cho, Saurabh Adya, Chandra Dhir, Ahmed Tewfik

Figure 1 for Improving Voice Trigger Detection with Metric Learning
Figure 2 for Improving Voice Trigger Detection with Metric Learning
Figure 3 for Improving Voice Trigger Detection with Metric Learning
Figure 4 for Improving Voice Trigger Detection with Metric Learning

Voice trigger detection is an important task, which enables activating a voice assistant when a target user speaks a keyword phrase. A detector is typically trained on speech data independent of speaker information and used for the voice trigger detection task. However, such a speaker independent voice trigger detector typically suffers from performance degradation on speech from underrepresented groups, such as accented speakers. In this work, we propose a novel voice trigger detector that can use a small number of utterances from a target speaker to improve detection accuracy. Our proposed model employs an encoder-decoder architecture. While the encoder performs speaker independent voice trigger detection, similar to the conventional detector, the decoder predicts a personalized embedding for each utterance. A personalized voice trigger score is then obtained as a similarity score between the embeddings of enrollment utterances and a test utterance. The personalized embedding allows adapting to target speaker's speech when computing the voice trigger score, hence improving voice trigger detection accuracy. Experimental results show that the proposed approach achieves a 38% relative reduction in a false rejection rate (FRR) compared to a baseline speaker independent voice trigger model.

* Submitted to InterSpeech 2022 
Viaarxiv icon

Device-Directed Speech Detection: Regularization via Distillation for Weakly-Supervised Models

Mar 30, 2022
Vineet Garg, Ognjen Rudovic, Pranay Dighe, Ahmed H. Abdelaziz, Erik Marchi, Saurabh Adya, Chandra Dhir, Ahmed Tewfik

Figure 1 for Device-Directed Speech Detection: Regularization via Distillation for Weakly-Supervised Models
Figure 2 for Device-Directed Speech Detection: Regularization via Distillation for Weakly-Supervised Models
Figure 3 for Device-Directed Speech Detection: Regularization via Distillation for Weakly-Supervised Models
Figure 4 for Device-Directed Speech Detection: Regularization via Distillation for Weakly-Supervised Models

We address the problem of detecting speech directed to a device that does not contain a specific wake-word. Specifically, we focus on audio coming from a touch-based invocation. Mitigating virtual assistants (VAs) activation due to accidental button presses is critical for user experience. While the majority of approaches to false trigger mitigation (FTM) are designed to detect the presence of a target keyword, inferring user intent in absence of keyword is difficult. This also poses a challenge when creating the training/evaluation data for such systems due to inherent ambiguity in the user's data. To this end, we propose a novel FTM approach that uses weakly-labeled training data obtained with a newly introduced data sampling strategy. While this sampling strategy reduces data annotation efforts, the data labels are noisy as the data are not annotated manually. We use these data to train an acoustics-only model for the FTM task by regularizing its loss function via knowledge distillation from an ASR-based (LatticeRNN) model. This improves the model decisions, resulting in 66% gain in accuracy, as measured by equal-error-rate (EER), over the base acoustics-only model. We also show that the ensemble of the LatticeRNN and acoustic-distilled models brings further accuracy improvement of 20%.

* Submitted to INTERSPEECH 2022 
Viaarxiv icon

DKM: Differentiable K-Means Clustering Layer for Neural Network Compression

Aug 28, 2021
Minsik Cho, Keivan A. Vahid, Saurabh Adya, Mohammad Rastegari

Figure 1 for DKM: Differentiable K-Means Clustering Layer for Neural Network Compression
Figure 2 for DKM: Differentiable K-Means Clustering Layer for Neural Network Compression
Figure 3 for DKM: Differentiable K-Means Clustering Layer for Neural Network Compression
Figure 4 for DKM: Differentiable K-Means Clustering Layer for Neural Network Compression

Deep neural network (DNN) model compression for efficient on-device inference is becoming increasingly important to reduce memory requirements and keep user data on-device. To this end, we propose a novel differentiable k-means clustering layer (DKM) and its application to train-time weight clustering-based DNN model compression. DKM casts k-means clustering as an attention problem and enables joint optimization of the parameters and clustering centroids. Unlike prior works that rely on additional regularizers and parameters, DKM-based compression keeps the original loss function and model architecture fixed. We evaluated DKM-based compression on various DNN models for computer vision and natural language processing (NLP) tasks. Our results demonstrate that DMK delivers superior compression and accuracy trade-off on ImageNet1k and GLUE benchmarks. For example, DKM-based compression can offer 74.5% top-1 ImageNet1k accuracy on ResNet50 DNN model with 3.3MB model size (29.4x model compression factor). For MobileNet-v1, which is a challenging DNN to compress, DKM delivers 62.8% top-1 ImageNet1k accuracy with 0.74 MB model size (22.4x model compression factor). This result is 6.8% higher top-1 accuracy and 33% relatively smaller model size than the current state-of-the-art DNN compression algorithms. Additionally, DKM enables compression of DistilBERT model by 11.8x with minimal (1.1%) accuracy loss on GLUE NLP benchmarks.

Viaarxiv icon

Streaming Transformer for Hardware Efficient Voice Trigger Detection and False Trigger Mitigation

May 14, 2021
Vineet Garg, Wonil Chang, Siddharth Sigtia, Saurabh Adya, Pramod Simha, Pranay Dighe, Chandra Dhir

Figure 1 for Streaming Transformer for Hardware Efficient Voice Trigger Detection and False Trigger Mitigation
Figure 2 for Streaming Transformer for Hardware Efficient Voice Trigger Detection and False Trigger Mitigation
Figure 3 for Streaming Transformer for Hardware Efficient Voice Trigger Detection and False Trigger Mitigation
Figure 4 for Streaming Transformer for Hardware Efficient Voice Trigger Detection and False Trigger Mitigation

We present a unified and hardware efficient architecture for two stage voice trigger detection (VTD) and false trigger mitigation (FTM) tasks. Two stage VTD systems of voice assistants can get falsely activated to audio segments acoustically similar to the trigger phrase of interest. FTM systems cancel such activations by using post trigger audio context. Traditional FTM systems rely on automatic speech recognition lattices which are computationally expensive to obtain on device. We propose a streaming transformer (TF) encoder architecture, which progressively processes incoming audio chunks and maintains audio context to perform both VTD and FTM tasks using only acoustic features. The proposed joint model yields an average 18% relative reduction in false reject rate (FRR) for the VTD task at a given false alarm rate. Moreover, our model suppresses 95% of the false triggers with an additional one second of post-trigger audio. Finally, on-device measurements show 32% reduction in runtime memory and 56% reduction in inference time compared to non-streaming version of the model.

Viaarxiv icon

Hybrid Transformer/CTC Networks for Hardware Efficient Voice Triggering

Aug 05, 2020
Saurabh Adya, Vineet Garg, Siddharth Sigtia, Pramod Simha, Chandra Dhir

Figure 1 for Hybrid Transformer/CTC Networks for Hardware Efficient Voice Triggering
Figure 2 for Hybrid Transformer/CTC Networks for Hardware Efficient Voice Triggering
Figure 3 for Hybrid Transformer/CTC Networks for Hardware Efficient Voice Triggering
Figure 4 for Hybrid Transformer/CTC Networks for Hardware Efficient Voice Triggering

We consider the design of two-pass voice trigger detection systems. We focus on the networks in the second pass that are used to re-score candidate segments obtained from the first-pass. Our baseline is an acoustic model(AM), with BiLSTM layers, trained by minimizing the CTC loss. We replace the BiLSTM layers with self-attention layers. Results on internal evaluation sets show that self-attention networks yield better accuracy while requiring fewer parameters. We add an auto-regressive decoder network on top of the self-attention layers and jointly minimize the CTC loss on the encoder and the cross-entropy loss on the decoder. This design yields further improvements over the baseline. We retrain all the models above in a multi-task learning(MTL) setting, where one branch of a shared network is trained as an AM, while the second branch classifies the whole sequence to be true-trigger or not. Results demonstrate that networks with self-attention layers yield $\sim$60% relative reduction in false reject rates for a given false-alarm rate, while requiring 10% fewer parameters. When trained in the MTL setup, self-attention networks yield further accuracy improvements. On-device measurements show that we observe 70% relative reduction in inference time. Additionally, the proposed network architectures are $\sim$5X faster to train.

* INTERSPEECH, 2020 
Viaarxiv icon