Alert button
Picture for Saswat Priyadarshi Nayak

Saswat Priyadarshi Nayak

Alert button

Cyber Mobility Mirror: A Deep Learning-based Real-World Object Perception Platform Using Roadside LiDAR

Apr 07, 2022
Zhengwei Bai, Saswat Priyadarshi Nayak, Xuanpeng Zhao, Guoyuan Wu, Matthew J. Barth, Xuewei Qi, Yongkang Liu, Emrah Akin Sisbot, Kentaro Oguchi

Figure 1 for Cyber Mobility Mirror: A Deep Learning-based Real-World Object Perception Platform Using Roadside LiDAR
Figure 2 for Cyber Mobility Mirror: A Deep Learning-based Real-World Object Perception Platform Using Roadside LiDAR
Figure 3 for Cyber Mobility Mirror: A Deep Learning-based Real-World Object Perception Platform Using Roadside LiDAR
Figure 4 for Cyber Mobility Mirror: A Deep Learning-based Real-World Object Perception Platform Using Roadside LiDAR

Object perception plays a fundamental role in Cooperative Driving Automation (CDA) which is regarded as a revolutionary promoter for the next-generation transportation systems. However, the vehicle-based perception may suffer from the limited sensing range and occlusion as well as low penetration rates in connectivity. In this paper, we propose Cyber Mobility Mirror (CMM), a next-generation real-time traffic surveillance system for 3D object perception and reconstruction, to explore the potential of roadside sensors for enabling CDA in the real world. The CMM system consists of six main components: 1) the data pre-processor to retrieve and preprocess the raw data; 2) the roadside 3D object detector to generate 3D detection results; 3) the multi-object tracker to identify detected objects; 4) the global locator to map positioning information from the LiDAR coordinate to geographic coordinate using coordinate transformation; 5) the cloud-based communicator to transmit perception information from roadside sensors to equipped vehicles, and 6) the onboard advisor to reconstruct and display the real-time traffic conditions via Graphical User Interface (GUI). In this study, a field-operational system is deployed at a real-world intersection, University Avenue and Iowa Avenue in Riverside, California to assess the feasibility and performance of our CMM system. Results from field tests demonstrate that our CMM prototype system can provide satisfactory perception performance with 96.99% precision and 83.62% recall. High-fidelity real-time traffic conditions (at the object level) can be geo-localized with an average error of 0.14m and displayed on the GUI of the equipped vehicle with a frequency of 3-4 Hz.

Viaarxiv icon

Cyber Mobility Mirror: Deep Learning-based Real-time 3D Object Perception and Reconstruction Using Roadside LiDAR

Feb 28, 2022
Zhengwei Bai, Saswat Priyadarshi Nayak, Xuanpeng Zhao, Guoyuan Wu, Matthew J. Barth, Xuewei Qi, Yongkang Liu, Kentaro Oguchi

Figure 1 for Cyber Mobility Mirror: Deep Learning-based Real-time 3D Object Perception and Reconstruction Using Roadside LiDAR
Figure 2 for Cyber Mobility Mirror: Deep Learning-based Real-time 3D Object Perception and Reconstruction Using Roadside LiDAR
Figure 3 for Cyber Mobility Mirror: Deep Learning-based Real-time 3D Object Perception and Reconstruction Using Roadside LiDAR
Figure 4 for Cyber Mobility Mirror: Deep Learning-based Real-time 3D Object Perception and Reconstruction Using Roadside LiDAR

Enabling Cooperative Driving Automation (CDA) requires high-fidelity and real-time perception information, which is available from onboard sensors or vehicle-to-everything (V2X) communications. Nevertheless, the accessibility of this information may suffer from the range and occlusion of perception or limited penetration rates in connectivity. In this paper, we introduce the prototype of Cyber Mobility Mirror (CMM), a next-generation real-time traffic surveillance system for 3D object detection, classification, tracking, and reconstruction, to provide CAVs with wide-range high-fidelity perception information in a mixed traffic environment. The CMM system consists of six main components: 1) the data pre-processor to retrieve and pre-process raw data from the roadside LiDAR; 2) the 3D object detector to generate 3D bounding boxes based on point cloud data; 3) the multi-objects tracker to endow unique IDs to detected objects and estimate their dynamic states; 4) the global locator to map positioning information from the LiDAR coordinate to geographic coordinate using coordinate transformation; 5) the cloud-based communicator to transmit perception information from roadside sensors to equipped vehicles; and 6) the onboard advisor to reconstruct and display the real-time traffic conditions via Graphical User Interface (GUI). In this study, a field-operational prototype system is deployed at a real-world intersection, University Avenue and Iowa Avenue in Riverside, California to assess the feasibility and performance of our CMM system. Results from field tests demonstrate that our CMM prototype system can provide satisfactory perception performance with 96.99% precision and 83.62% recall. High-fidelity real-time traffic conditions (at the object level) can be displayed on the GUI of the equipped vehicle with a frequency of 3-4 Hz.

* Submitted to Transportation Research Part C: Emerging Technologies 
Viaarxiv icon