Abstract:As social media has become a predominant mode of communication globally, the rise of abusive content threatens to undermine civil discourse. Recognizing the critical nature of this issue, a significant body of research has been dedicated to developing language models that can detect various types of online abuse, e.g., hate speech, cyberbullying. However, there exists a notable disconnect between platform policies, which often consider the author's intention as a criterion for content moderation, and the current capabilities of detection models, which typically lack efforts to capture intent. This paper examines the role of intent in content moderation systems. We review state of the art detection models and benchmark training datasets for online abuse to assess their awareness and ability to capture intent. We propose strategic changes to the design and development of automated detection and moderation systems to improve alignment with ethical and policy conceptualizations of abuse.
Abstract:Social media users drive the spread of misinformation online by sharing posts that include erroneous information or commenting on controversial topics with unsubstantiated arguments often in earnest. Work on echo chambers has suggested that users' perspectives are reinforced through repeated interactions with like-minded peers, promoted by homophily and bias in information diffusion. Building on long-standing interest in the social bases of language and linguistic underpinnings of social behavior, this work explores how conversations around misinformation are mediated through language use. We compare a number of linguistic measures, e.g., in-/out-group cues, readability, and discourse connectives, within and across topics of conversation and user communities. Our findings reveal increased presence of group identity signals and processing fluency within echo chambers during discussions of misinformation. We discuss the specific character of these broader trends across topics and examine contextual influences.
Abstract:We investigate how hallucination in large language models (LLM) is characterized in peer-reviewed literature using a critical examination of 103 publications across NLP research. Through a comprehensive review of sociological and technological literature, we identify a lack of agreement with the term `hallucination.' Additionally, we conduct a survey with 171 practitioners from the field of NLP and AI to capture varying perspectives on hallucination. Our analysis underscores the necessity for explicit definitions and frameworks outlining hallucination within NLP, highlighting potential challenges, and our survey inputs provide a thematic understanding of the influence and ramifications of hallucination in society.
Abstract:This paper investigates how risk influences the way people barter. We used Minecraft to create an experimental environment in which people bartered to earn a monetary bonus. Our findings reveal that subjects exhibit risk-aversion to competitive bartering environments and deliberate over their trades longer when compared to cooperative environments. These initial experiments lay groundwork for development of agents capable of strategically trading with human counterparts in different environments.
Abstract:Hypothesis formulation and testing are central to empirical research. A strong hypothesis is a best guess based on existing evidence and informed by a comprehensive view of relevant literature. However, with exponential increase in the number of scientific articles published annually, manual aggregation and synthesis of evidence related to a given hypothesis is a challenge. Our work explores the ability of current large language models (LLMs) to discern evidence in support or refute of specific hypotheses based on the text of scientific abstracts. We share a novel dataset for the task of scientific hypothesis evidencing using community-driven annotations of studies in the social sciences. We compare the performance of LLMs to several state-of-the-art benchmarks and highlight opportunities for future research in this area. The dataset is available at https://github.com/Sai90000/ScientificHypothesisEvidencing.git
Abstract:Concerns about reproducibility in artificial intelligence (AI) have emerged, as researchers have reported unsuccessful attempts to directly reproduce published findings in the field. Replicability, the ability to affirm a finding using the same procedures on new data, has not been well studied. In this paper, we examine both reproducibility and replicability of a corpus of 16 papers on table structure recognition (TSR), an AI task aimed at identifying cell locations of tables in digital documents. We attempt to reproduce published results using codes and datasets provided by the original authors. We then examine replicability using a dataset similar to the original as well as a new dataset, GenTSR, consisting of 386 annotated tables extracted from scientific papers. Out of 16 papers studied, we reproduce results consistent with the original in only four. Two of the four papers are identified as replicable using the similar dataset under certain IoU values. No paper is identified as replicable using the new dataset. We offer observations on the causes of irreproducibility and irreplicability. All code and data are available on Codeocean at https://codeocean.com/capsule/6680116/tree.
Abstract:We present a prototype hybrid prediction market and demonstrate the avenue it represents for meaningful human-AI collaboration. We build on prior work proposing artificial prediction markets as a novel machine-learning algorithm. In an artificial prediction market, trained AI agents buy and sell outcomes of future events. Classification decisions can be framed as outcomes of future events, and accordingly, the price of an asset corresponding to a given classification outcome can be taken as a proxy for the confidence of the system in that decision. By embedding human participants in these markets alongside bot traders, we can bring together insights from both. In this paper, we detail pilot studies with prototype hybrid markets for the prediction of replication study outcomes. We highlight challenges and opportunities, share insights from semi-structured interviews with hybrid market participants, and outline a vision for ongoing and future work.
Abstract:Explainably estimating confidence in published scholarly work offers opportunity for faster and more robust scientific progress. We develop a synthetic prediction market to assess the credibility of published claims in the social and behavioral sciences literature. We demonstrate our system and detail our findings using a collection of known replication projects. We suggest that this work lays the foundation for a research agenda that creatively uses AI for peer review.
Abstract:We present a synthetic prediction market whose agent purchase logic is defined using a sigmoid transformation of a convex semi-algebraic set defined in feature space. Asset prices are determined by a logarithmic scoring market rule. Time varying asset prices affect the structure of the semi-algebraic sets leading to time-varying agent purchase rules. We show that under certain assumptions on the underlying geometry, the resulting synthetic prediction market can be used to arbitrarily closely approximate a binary function defined on a set of input data. We also provide sufficient conditions for market convergence and show that under certain instances markets can exhibit limit cycles in asset spot price. We provide an evolutionary algorithm for training agent parameters to allow a market to model the distribution of a given data set and illustrate the market approximation using two open source data sets. Results are compared to standard machine learning methods.