Abstract:As LLMs (large language models) are increasingly used to generate synthetic personas particularly in data-limited domains such as health, privacy, and HCI, it becomes necessary to understand how these narratives represent identity, especially that of minority communities. In this paper, we audit synthetic personas generated by 3 LLMs (GPT4o, Gemini 1.5 Pro, Deepseek 2.5) through the lens of representational harm, focusing specifically on racial identity. Using a mixed methods approach combining close reading, lexical analysis, and a parameterized creativity framework, we compare 1512 LLM generated personas to human-authored responses. Our findings reveal that LLMs disproportionately foreground racial markers, overproduce culturally coded language, and construct personas that are syntactically elaborate yet narratively reductive. These patterns result in a range of sociotechnical harms, including stereotyping, exoticism, erasure, and benevolent bias, that are often obfuscated by superficially positive narrations. We formalize this phenomenon as algorithmic othering, where minoritized identities are rendered hypervisible but less authentic. Based on these findings, we offer design recommendations for narrative-aware evaluation metrics and community-centered validation protocols for synthetic identity generation.
Abstract:Natural Language Processing tasks that aim to infer an author's private states, e.g., emotions and opinions, from their written text, typically rely on datasets annotated by third-party annotators. However, the assumption that third-party annotators can accurately capture authors' private states remains largely unexamined. In this study, we present human subjects experiments on emotion recognition tasks that directly compare third-party annotations with first-party (author-provided) emotion labels. Our findings reveal significant limitations in third-party annotations-whether provided by human annotators or large language models (LLMs)-in faithfully representing authors' private states. However, LLMs outperform human annotators nearly across the board. We further explore methods to improve third-party annotation quality. We find that demographic similarity between first-party authors and third-party human annotators enhances annotation performance. While incorporating first-party demographic information into prompts leads to a marginal but statistically significant improvement in LLMs' performance. We introduce a framework for evaluating the limitations of third-party annotations and call for refined annotation practices to accurately represent and model authors' private states.