Abstract:Large Language Models (LLMs) have shown remarkable ability in solving complex tasks, making them a promising tool for enhancing tabular learning. However, existing LLM-based methods suffer from high resource requirements, suboptimal demonstration selection, and limited interpretability, which largely hinder their prediction performance and application in the real world. To overcome these problems, we propose a novel in-context learning framework for tabular prediction. The core idea is to leverage the explanations generated by LLMs to guide a smaller, locally deployable Surrogate Language Model (SLM) to make interpretable tabular predictions. Specifically, our framework mainly involves three stages: (i) Post Hoc Explanation Generation, where LLMs are utilized to generate explanations for question-answer pairs in candidate demonstrations, providing insights into the reasoning behind the answer. (ii) Post Hoc Explanation-Guided Demonstrations Selection, which utilizes explanations generated by LLMs to guide the process of demonstration selection from candidate demonstrations. (iii) Post Hoc Explanation-Guided Interpretable SLM Prediction, which utilizes the demonstrations obtained in step (ii) as in-context and merges corresponding explanations as rationales to improve the performance of SLM and guide the model to generate interpretable outputs. Experimental results highlight the framework's effectiveness, with an average accuracy improvement of 5.31% across various tabular datasets in diverse domains.
Abstract:Few-shot tabular learning, in which machine learning models are trained with a limited amount of labeled data, provides a cost-effective approach to addressing real-world challenges. The advent of Large Language Models (LLMs) has sparked interest in leveraging their pre-trained knowledge for few-shot tabular learning. Despite promising results, existing approaches either rely on test-time knowledge extraction, which introduces undesirable latency, or text-level knowledge, which leads to unreliable feature engineering. To overcome these limitations, we propose Latte, a training-time knowledge extraction framework that transfers the latent prior knowledge within LLMs to optimize a more generalized downstream model. Latte enables general knowledge-guided downstream tabular learning, facilitating the weighted fusion of information across different feature values while reducing the risk of overfitting to limited labeled data. Furthermore, Latte is compatible with existing unsupervised pre-training paradigms and effectively utilizes available unlabeled samples to overcome the performance limitations imposed by an extremely small labeled dataset. Extensive experiments on various few-shot tabular learning benchmarks demonstrate the superior performance of Latte, establishing it as a state-of-the-art approach in this domain
Abstract:Tabular data remains one of the most prevalent and critical data formats across diverse real-world applications. However, its effective use in machine learning (ML) is often constrained by challenges such as data scarcity, privacy concerns, and class imbalance. Synthetic data generation has emerged as a promising solution, leveraging generative models to learn the distribution of real datasets and produce high-fidelity, privacy-preserving samples. Various generative paradigms have been explored, including energy-based models (EBMs), variational autoencoders (VAEs), generative adversarial networks (GANs), large language models (LLMs), and diffusion models. While several surveys have investigated synthetic tabular data generation, most focus on narrow subdomains or specific generative methods, such as GANs, diffusion models, or privacy-preserving techniques. This limited scope often results in fragmented insights, lacking a comprehensive synthesis that bridges diverse approaches. In particular, recent advances driven by LLMs and diffusion-based models remain underexplored. This gap hinders a holistic understanding of the field`s evolution, methodological interplay, and open challenges. To address this, our survey provides a unified and systematic review of synthetic tabular data generation. Our contributions are threefold: (1) we propose a comprehensive taxonomy that organizes existing methods into traditional approaches, diffusion-based methods, and LLM-based models, and provide an in-depth comparative analysis; (2) we detail the complete pipeline for synthetic tabular data generation, including data synthesis, post-processing, and evaluation; (3) we identify major challenges, explore real-world applications, and outline open research questions and future directions to guide future work in this rapidly evolving area.