Abstract:Recently, large language model (LLM)-based agents have achieved significant success in interactive environments, attracting significant academic and industrial attention. Despite these advancements, current research predominantly focuses on English scenarios. In reality, there are over 7,000 languages worldwide, all of which demand access to comparable agentic services. Nevertheless, the development of language agents remains inadequate for meeting the diverse requirements of multilingual agentic applications. To fill this gap, we introduce X-WebAgentBench, a novel multilingual agent benchmark in an interactive web environment, which evaluates the planning and interaction performance of language agents across multiple languages, thereby contributing to the advancement of global agent intelligence. Additionally, we assess the performance of various LLMs and cross-lingual alignment methods, examining their effectiveness in enhancing agents. Our findings reveal that even advanced models like GPT-4o, when combined with cross-lingual techniques, fail to achieve satisfactory results. We hope that X-WebAgentBench can serve as a valuable benchmark for multilingual agent scenario in real-world applications.
Abstract:Vision-Language-Action (VLA) models have recently advanced robotic manipulation by translating natural-language instructions and image information into sequential control actions. However, these models often underperform in open-world scenarios, as they are predominantly trained on successful expert demonstrations and exhibit a limited capacity for failure recovery. In this work, we present a Robotic Failure Analysis and Correction (RoboFAC) framework to address this issue. Firstly, we construct RoboFAC dataset comprising 9,440 erroneous manipulation trajectories and 78,623 QA pairs across 16 diverse tasks and 53 scenes in both simulation and real-world environments. Leveraging our dataset, we develop RoboFAC model, which is capable of Task Understanding, Failure Analysis and Failure Correction. Experimental results demonstrate that the RoboFAC model outperforms GPT-4o by 34.1% on our evaluation benchmark. Furthermore, we integrate the RoboFAC model into a real-world VLA control pipeline as an external supervision providing correction instructions, yielding a 29.1% relative improvement on average on four real-world tasks. The results show that our RoboFAC framework effectively handles robotic failures and assists the VLA model in recovering from failures.