Abstract:Over the past years, advances in artificial intelligence (AI) have demonstrated how AI can solve many perception and generation tasks, such as image classification and text writing, yet reasoning remains a challenge. This paper introduces the FLIP dataset, a benchmark for evaluating AI reasoning capabilities based on human verification tasks on the Idena blockchain. FLIP challenges present users with two orderings of 4 images, requiring them to identify the logically coherent one. By emphasizing sequential reasoning, visual storytelling, and common sense, FLIP provides a unique testbed for multimodal AI systems. Our experiments evaluate state-of-the-art models, leveraging both vision-language models (VLMs) and large language models (LLMs). Results reveal that even the best open-sourced and closed-sourced models achieve maximum accuracies of 75.5% and 77.9%, respectively, in zero-shot settings, compared to human performance of 95.3%. Captioning models aid reasoning models by providing text descriptions of images, yielding better results than when using the raw images directly, 69.6% vs. 75.2% for Gemini 1.5 Pro. Combining the predictions from 15 models in an ensemble increases the accuracy to 85.2%. These findings highlight the limitations of existing reasoning models and the need for robust multimodal benchmarks like FLIP. The full codebase and dataset will be available at https://github.com/aplesner/FLIP-Reasoning-Challenge.
Abstract:Modern CAPTCHAs rely heavily on vision tasks that are supposedly hard for computers but easy for humans. However, advances in image recognition models pose a significant threat to such CAPTCHAs. These models can easily be fooled by generating some well-hidden "random" noise and adding it to the image, or hiding objects in the image. However, these methods are model-specific and thus can not aid CAPTCHAs in fooling all models. We show in this work that by allowing for more significant changes to the images while preserving the semantic information and keeping it solvable by humans, we can fool many state-of-the-art models. Specifically, we demonstrate that by adding masks of various intensities the Accuracy @ 1 (Acc@1) drops by more than 50%-points for all models, and supposedly robust models such as vision transformers see an Acc@1 drop of 80%-points. These masks can therefore effectively fool modern image classifiers, thus showing that machines have not caught up with humans -- yet.