Abstract:Reinforcement learning with group-based objectives, such as Group Relative Policy Optimization (GRPO), is a common framework for aligning large language models on complex reasoning tasks. However, standard GRPO treats each rollout trajectory as an independent flat sequence and assigns a single sequence-level advantage to all tokens, which leads to sample inefficiency and a length bias toward verbose, redundant chains of thought without improving logical depth. We introduce TreeAdv (Tree-Structured Advantage Redistribution for Group-Based RL), which makes the tree structure of group rollouts explicit for both exploration and advantage assignment. Specifically, TreeAdv builds a group of trees (a forest) based on an entropy-driven sampling method where each tree branches at high-uncertainty decisions while sharing low-uncertainty tokens across rollouts. Then, TreeAdv aggregates token-level advantages for internal tree segments by redistributing the advantages of complete rollouts (all leaf nodes), and TreeAdv can easily apply to group-based objectives such as GRPO or GSPO. Across 10 math reasoning benchmarks, TreeAdv consistently outperforms GRPO and GSPO, while using substantially fewer generated tokens under identical supervision, data, and decoding budgets.




Abstract:This paper presents the Entropy-Driven Unified Process Reward Model (EDU-PRM), a novel framework that approximates state-of-the-art performance in process supervision while drastically reducing training costs. EDU-PRM introduces an entropy-guided dynamic step partitioning mechanism, using logit distribution entropy to pinpoint high-uncertainty regions during token generation dynamically. This self-assessment capability enables precise step-level feedback without manual fine-grained annotation, addressing a critical challenge in process supervision. Experiments on the Qwen2.5-72B model with only 7,500 EDU-PRM-generated training queries demonstrate accuracy closely approximating the full Qwen2.5-72B-PRM (71.1% vs. 71.6%), achieving a 98% reduction in query cost compared to prior methods. This work establishes EDU-PRM as an efficient approach for scalable process reward model training.