Abstract:Recent advances in Large Language Models (LLMs) have led to the widespread adoption of third-party inference services, raising critical privacy concerns. Existing methods of performing private third-party inference, such as Secure Multiparty Computation (SMPC), often rely on cryptographic methods. However, these methods are thousands of times slower than standard unencrypted inference, and fail to scale to large modern LLMs. Therefore, recent lines of work have explored the replacement of expensive encrypted nonlinear computations in SMPC with statistical obfuscation methods - in particular, revealing permuted hidden states to the third parties, with accompanying strong claims of the difficulty of reversal into the unpermuted states. In this work, we begin by introducing a novel reconstruction technique that can recover original prompts from hidden states with nearly perfect accuracy across multiple state-of-the-art LLMs. We then show that extensions of our attack are nearly perfectly effective in reversing permuted hidden states of LLMs, demonstrating the insecurity of three recently proposed privacy schemes. We further dissect the shortcomings of prior theoretical `proofs' of permuation security which allow our attack to succeed. Our findings highlight the importance of rigorous security analysis in privacy-preserving LLM inference.
Abstract:Reverse engineering 3D computer-aided design (CAD) models from images is an important task for many downstream applications including interactive editing, manufacturing, architecture, robotics, etc. The difficulty of the task lies in vast representational disparities between the CAD output and the image input. CAD models are precise, programmatic constructs that involves sequential operations combining discrete command structure with continuous attributes -- making it challenging to learn and optimize in an end-to-end fashion. Concurrently, input images introduce inherent challenges such as photo-metric variability and sensor noise, complicating the reverse engineering process. In this work, we introduce a novel approach that conditionally factorizes the task into two sub-problems. First, we leverage large foundation models, particularly GPT-4V, to predict the global discrete base structure with semantic information. Second, we propose TrAssembler that conditioned on the discrete structure with semantics predicts the continuous attribute values. To support the training of our TrAssembler, we further constructed an annotated CAD dataset of common objects from ShapeNet. Putting all together, our approach and data demonstrate significant first steps towards CAD-ifying images in the wild. Our project page: https://anonymous123342.github.io/