Abstract:Recent advances in Large Language Models (LLMs) have led to the widespread adoption of third-party inference services, raising critical privacy concerns. Existing methods of performing private third-party inference, such as Secure Multiparty Computation (SMPC), often rely on cryptographic methods. However, these methods are thousands of times slower than standard unencrypted inference, and fail to scale to large modern LLMs. Therefore, recent lines of work have explored the replacement of expensive encrypted nonlinear computations in SMPC with statistical obfuscation methods - in particular, revealing permuted hidden states to the third parties, with accompanying strong claims of the difficulty of reversal into the unpermuted states. In this work, we begin by introducing a novel reconstruction technique that can recover original prompts from hidden states with nearly perfect accuracy across multiple state-of-the-art LLMs. We then show that extensions of our attack are nearly perfectly effective in reversing permuted hidden states of LLMs, demonstrating the insecurity of three recently proposed privacy schemes. We further dissect the shortcomings of prior theoretical `proofs' of permuation security which allow our attack to succeed. Our findings highlight the importance of rigorous security analysis in privacy-preserving LLM inference.
Abstract:As fine-tuning large language models (LLMs) becomes increasingly prevalent, users often rely on third-party services with limited visibility into their fine-tuning processes. This lack of transparency raises the question: how do consumers verify that fine-tuning services are performed correctly? For instance, a service provider could claim to fine-tune a model for each user, yet simply send all users back the same base model. To address this issue, we propose vTune, a simple method that uses a small number of backdoor data points added to the training data to provide a statistical test for verifying that a provider fine-tuned a custom model on a particular user's dataset. Unlike existing works, vTune is able to scale to verification of fine-tuning on state-of-the-art LLMs, and can be used both with open-source and closed-source models. We test our approach across several model families and sizes as well as across multiple instruction-tuning datasets, and find that the statistical test is satisfied with p-values on the order of $\sim 10^{-40}$, with no negative impact on downstream task performance. Further, we explore several attacks that attempt to subvert vTune and demonstrate the method's robustness to these attacks.