Abstract:Federated learning (FL) enables collaborative model training without centralizing raw data, but privacy regulations such as the right to be forgotten require FL systems to remove the influence of previously used training data upon request. Retraining a federated model from scratch is prohibitively expensive, motivating federated unlearning (FU). However, existing FU methods suffer from high unlearning overhead, utility degradation caused by entangled knowledge, and unintended relearning during post-unlearning recovery. In this paper, we propose FedCARE, a unified and low overhead FU framework that enables conflict-aware unlearning and relearning-resistant recovery. FedCARE leverages gradient ascent for efficient forgetting when target data are locally available and employs data free model inversion to construct class level proxies of shared knowledge. Based on these insights, FedCARE integrates a pseudo-sample generator, conflict-aware projected gradient ascent for utility preserving unlearning, and a recovery strategy that suppresses rollback toward the pre-unlearning model. FedCARE supports client, instance, and class level unlearning with modest overhead. Extensive experiments on multiple datasets and model architectures under both IID and non-IID settings show that FedCARE achieves effective forgetting, improved utility retention, and reduced relearning risk compared to state of the art FU baselines.




Abstract:Machine unlearning aims to eliminate the influence of specific data from trained models to ensure privacy compliance. However, most existing methods assume full access to the original training dataset, which is often impractical. We address a more realistic yet challenging setting: few-shot zero-glance, where only a small subset of the retained data is available and the forget set is entirely inaccessible. We introduce GFOES, a novel framework comprising a Generative Feedback Network (GFN) and a two-phase fine-tuning procedure. GFN synthesises Optimal Erasure Samples (OES), which induce high loss on target classes, enabling the model to forget class-specific knowledge without access to the original forget data, while preserving performance on retained classes. The two-phase fine-tuning procedure enables aggressive forgetting in the first phase, followed by utility restoration in the second. Experiments on three image classification datasets demonstrate that GFOES achieves effective forgetting at both logit and representation levels, while maintaining strong performance using only 5% of the original data. Our framework offers a practical and scalable solution for privacy-preserving machine learning under data-constrained conditions.