Abstract:LLMs are bound to transform healthcare with advanced decision support and flexible chat assistants. However, LLMs are prone to generate inaccurate medical content. To ground LLMs in high-quality medical knowledge, LLMs have been equipped with external knowledge via RAG, where unstructured medical knowledge is split into small text chunks that can be selectively retrieved and integrated into the LLMs context. Yet, existing RAG pipelines rely on raw, unstructured medical text, which can be noisy, uncurated and difficult for LLMs to effectively leverage. Systematic approaches to organize medical knowledge to best surface it to LLMs are generally lacking. To address these challenges, we introduce MIRIAD, a large-scale, curated corpus of 5,821,948 medical QA pairs, each rephrased from and grounded in a passage from peer-reviewed medical literature using a semi-automated pipeline combining LLM generation, filtering, grounding, and human annotation. Unlike prior medical corpora, which rely on unstructured text, MIRIAD encapsulates web-scale medical knowledge in an operationalized query-response format, which enables more targeted retrieval. Experiments on challenging medical QA benchmarks show that augmenting LLMs with MIRIAD improves accuracy up to 6.7% compared to unstructured RAG baselines with the same source corpus and with the same amount of retrieved text. Moreover, MIRIAD improved the ability of LLMs to detect medical hallucinations by 22.5 to 37% (increase in F1 score). We further introduce MIRIAD-Atlas, an interactive map of MIRIAD spanning 56 medical disciplines, enabling clinical users to visually explore, search, and refine medical knowledge. MIRIAD promises to unlock a wealth of down-stream applications, including medical information retrievers, enhanced RAG applications, and knowledge-grounded chat interfaces, which ultimately enables more reliable LLM applications in healthcare.
Abstract:Wearable devices for seizure monitoring detection could significantly improve the quality of life of epileptic patients. However, existing solutions that mostly rely on full electrode set of electroencephalogram (EEG) measurements could be inconvenient for every day use. In this paper, we propose a novel knowledge distillation approach to transfer the knowledge from a sophisticated seizure detector (called the teacher) trained on data from the full set of electrodes to learn new detectors (called the student). They are both providing lightweight implementations and significantly reducing the number of electrodes needed for recording the EEG. We consider the case where the teacher and the student seizure detectors are graph neural networks (GNN), since these architectures actively use the connectivity information. We consider two cases (a) when a single student is learnt for all the patients using preselected channels; and (b) when personalized students are learnt for every individual patient, with personalized channel selection using a Gumbelsoftmax approach. Our experiments on the publicly available Temple University Hospital EEG Seizure Data Corpus (TUSZ) show that both knowledge-distillation and personalization play significant roles in improving performance of seizure detection, particularly for patients with scarce EEG data. We observe that using as few as two channels, we are able to obtain competitive seizure detection performance. This, in turn, shows the potential of our approach in more realistic scenario of wearable devices for personalized monitoring of seizures, even with few recordings.