Abstract:Recommendation systems in AI-based medical diagnostics and treatment constitute a critical component of AI in healthcare. Although some studies have explored this area and made notable progress, healthcare recommendation systems remain in their nascent stage. And these researches mainly target the treatment process such as drug or disease recommendations. In addition to the treatment process, the diagnostic process, particularly determining which medical examinations are necessary to evaluate the condition, also urgently requires intelligent decision support. To bridge this gap, we first formalize the task of medical examination recommendations. Compared to traditional recommendations, the medical examination recommendation involves more complex interactions. This complexity arises from two folds: 1) The historical medical records for examination recommendations are heterogeneous and redundant, which makes the recommendation results susceptible to noise. 2) The correlation between the medical history of patients is often irregular, making it challenging to model spatiotemporal dependencies. Motivated by the above observation, we propose a novel Diffusion-driven SpatioTemporal Graph KANsformer for Medical Examination Recommendation (DST-GKAN) with a two-stage learning paradigm to solve the above challenges. In the first stage, we exploit a task-adaptive diffusion model to distill recommendation-oriented information by reducing the noises in heterogeneous medical data. In the second stage, a spatiotemporal graph KANsformer is proposed to simultaneously model the complex spatial and temporal relationships. Moreover, to facilitate the medical examination recommendation research, we introduce a comprehensive dataset. The experimental results demonstrate the state-of-the-art performance of the proposed method compared to various competitive baselines.
Abstract:While text-to-image models like DALLE-3 and Stable Diffusion are rapidly proliferating, they often encounter challenges such as hallucination, bias, and the production of unsafe, low-quality output. To effectively address these issues, it is crucial to align these models with desired behaviors based on feedback from a multimodal judge. Despite their significance, current multimodal judges frequently undergo inadequate evaluation of their capabilities and limitations, potentially leading to misalignment and unsafe fine-tuning outcomes. To address this issue, we introduce MJ-Bench, a novel benchmark which incorporates a comprehensive preference dataset to evaluate multimodal judges in providing feedback for image generation models across four key perspectives: alignment, safety, image quality, and bias. Specifically, we evaluate a large variety of multimodal judges including smaller-sized CLIP-based scoring models, open-source VLMs (e.g. LLaVA family), and close-source VLMs (e.g. GPT-4o, Claude 3) on each decomposed subcategory of our preference dataset. Experiments reveal that close-source VLMs generally provide better feedback, with GPT-4o outperforming other judges in average. Compared with open-source VLMs, smaller-sized scoring models can provide better feedback regarding text-image alignment and image quality, while VLMs provide more accurate feedback regarding safety and generation bias due to their stronger reasoning capabilities. Further studies in feedback scale reveal that VLM judges can generally provide more accurate and stable feedback in natural language (Likert-scale) than numerical scales. Notably, human evaluations on end-to-end fine-tuned models using separate feedback from these multimodal judges provide similar conclusions, further confirming the effectiveness of MJ-Bench. All data, code, models are available at https://huggingface.co/MJ-Bench.