Abstract:Primal-dual safe RL methods commonly perform iterations between the primal update of the policy and the dual update of the Lagrange Multiplier. Such a training paradigm is highly susceptible to the error in cumulative cost estimation since this estimation serves as the key bond connecting the primal and dual update processes. We show that this problem causes significant underestimation of cost when using off-policy methods, leading to the failure to satisfy the safety constraint. To address this issue, we propose \textit{conservative policy optimization}, which learns a policy in a constraint-satisfying area by considering the uncertainty in cost estimation. This improves constraint satisfaction but also potentially hinders reward maximization. We then introduce \textit{local policy convexification} to help eliminate such suboptimality by gradually reducing the estimation uncertainty. We provide theoretical interpretations of the joint coupling effect of these two ingredients and further verify them by extensive experiments. Results on benchmark tasks show that our method not only achieves an asymptotic performance comparable to state-of-the-art on-policy methods while using much fewer samples, but also significantly reduces constraint violation during training. Our code is available at https://github.com/ZifanWu/CAL.
Abstract:In this paper, we aim to utilize only offline trajectory data to train a policy for multi-objective RL. We extend the offline policy-regularized method, a widely-adopted approach for single-objective offline RL problems, into the multi-objective setting in order to achieve the above goal. However, such methods face a new challenge in offline MORL settings, namely the preference-inconsistent demonstration problem. We propose two solutions to this problem: 1) filtering out preference-inconsistent demonstrations via approximating behavior preferences, and 2) adopting regularization techniques with high policy expressiveness. Moreover, we integrate the preference-conditioned scalarized update method into policy-regularized offline RL, in order to simultaneously learn a set of policies using a single policy network, thus reducing the computational cost induced by the training of a large number of individual policies for various preferences. Finally, we introduce Regularization Weight Adaptation to dynamically determine appropriate regularization weights for arbitrary target preferences during deployment. Empirical results on various multi-objective datasets demonstrate the capability of our approach in solving offline MORL problems.
Abstract:The generalization error curve of certain kernel regression method aims at determining the exact order of generalization error with various source condition, noise level and choice of the regularization parameter rather than the minimax rate. In this work, under mild assumptions, we rigorously provide a full characterization of the generalization error curves of the kernel gradient descent method (and a large class of analytic spectral algorithms) in kernel regression. Consequently, we could sharpen the near inconsistency of kernel interpolation and clarify the saturation effects of kernel regression algorithms with higher qualification, etc. Thanks to the neural tangent kernel theory, these results greatly improve our understanding of the generalization behavior of training the wide neural networks. A novel technical contribution, the analytic functional argument, might be of independent interest.
Abstract:Motivated by the studies of neural networks (e.g.,the neural tangent kernel theory), we perform a study on the large-dimensional behavior of kernel ridge regression (KRR) where the sample size $n \asymp d^{\gamma}$ for some $\gamma > 0$. Given an RKHS $\mathcal{H}$ associated with an inner product kernel defined on the sphere $\mathbb{S}^{d}$, we suppose that the true function $f_{\rho}^{*} \in [\mathcal{H}]^{s}$, the interpolation space of $\mathcal{H}$ with source condition $s>0$. We first determined the exact order (both upper and lower bound) of the generalization error of kernel ridge regression for the optimally chosen regularization parameter $\lambda$. We then further showed that when $0<s\le1$, KRR is minimax optimal; and when $s>1$, KRR is not minimax optimal (a.k.a. he saturation effect). Our results illustrate that the curves of rate varying along $\gamma$ exhibit the periodic plateau behavior and the multiple descent behavior and show how the curves evolve with $s>0$. Interestingly, our work provides a unified viewpoint of several recent works on kernel regression in the large-dimensional setting, which correspond to $s=0$ and $s=1$ respectively.
Abstract:The widely observed 'benign overfitting phenomenon' in the neural network literature raises the challenge to the 'bias-variance trade-off' doctrine in the statistical learning theory. Since the generalization ability of the 'lazy trained' over-parametrized neural network can be well approximated by that of the neural tangent kernel regression, the curve of the excess risk (namely, the learning curve) of kernel ridge regression attracts increasing attention recently. However, most recent arguments on the learning curve are heuristic and are based on the 'Gaussian design' assumption. In this paper, under mild and more realistic assumptions, we rigorously provide a full characterization of the learning curve: elaborating the effect and the interplay of the choice of the regularization parameter, the source condition and the noise. In particular, our results suggest that the 'benign overfitting phenomenon' exists in very wide neural networks only when the noise level is small.
Abstract:We perform a study on kernel regression for large-dimensional data (where the sample size $n$ is polynomially depending on the dimension $d$ of the samples, i.e., $n\asymp d^{\gamma}$ for some $\gamma >0$ ). We first build a general tool to characterize the upper bound and the minimax lower bound of kernel regression for large dimensional data through the Mendelson complexity $\varepsilon_{n}^{2}$ and the metric entropy $\bar{\varepsilon}_{n}^{2}$ respectively. When the target function falls into the RKHS associated with a (general) inner product model defined on $\mathbb{S}^{d}$, we utilize the new tool to show that the minimax rate of the excess risk of kernel regression is $n^{-1/2}$ when $n\asymp d^{\gamma}$ for $\gamma =2, 4, 6, 8, \cdots$. We then further determine the optimal rate of the excess risk of kernel regression for all the $\gamma>0$ and find that the curve of optimal rate varying along $\gamma$ exhibits several new phenomena including the {\it multiple descent behavior} and the {\it periodic plateau behavior}. As an application, For the neural tangent kernel (NTK), we also provide a similar explicit description of the curve of optimal rate. As a direct corollary, we know these claims hold for wide neural networks as well.
Abstract:Aiming at promoting the safe real-world deployment of Reinforcement Learning (RL), research on safe RL has made significant progress in recent years. However, most existing works in the literature still focus on the online setting where risky violations of the safety budget are likely to be incurred during training. Besides, in many real-world applications, the learned policy is required to respond to dynamically determined safety budgets (i.e., constraint threshold) in real time. In this paper, we target at the above real-time budget constraint problem under the offline setting, and propose Trajectory-based REal-time Budget Inference (TREBI) as a novel solution that approaches this problem from the perspective of trajectory distribution. Theoretically, we prove an error bound of the estimation on the episodic reward and cost under the offline setting and thus provide a performance guarantee for TREBI. Empirical results on a wide range of simulation tasks and a real-world large-scale advertising application demonstrate the capability of TREBI in solving real-time budget constraint problems under offline settings.
Abstract:In this paper, we study the generalization ability of the wide residual network on $\mathbb{S}^{d-1}$ with the ReLU activation function. We first show that as the width $m\rightarrow\infty$, the residual network kernel (RNK) uniformly converges to the residual neural tangent kernel (RNTK). This uniform convergence further guarantees that the generalization error of the residual network converges to that of the kernel regression with respect to the RNTK. As direct corollaries, we then show $i)$ the wide residual network with the early stopping strategy can achieve the minimax rate provided that the target regression function falls in the reproducing kernel Hilbert space (RKHS) associated with the RNTK; $ii)$ the wide residual network can not generalize well if it is trained till overfitting the data. We finally illustrate some experiments to reconcile the contradiction between our theoretical result and the widely observed ``benign overfitting phenomenon''
Abstract:In the misspecified kernel ridge regression problem, researchers usually assume the underground true function $f_{\rho}^{*} \in [\mathcal{H}]^{s}$, a less-smooth interpolation space of a reproducing kernel Hilbert space (RKHS) $\mathcal{H}$ for some $s\in (0,1)$. The existing minimax optimal results require $\|f_{\rho}^{*}\|_{L^{\infty}}<\infty$ which implicitly requires $s > \alpha_{0}$ where $\alpha_{0}\in (0,1)$ is the embedding index, a constant depending on $\mathcal{H}$. Whether the KRR is optimal for all $s\in (0,1)$ is an outstanding problem lasting for years. In this paper, we show that KRR is minimax optimal for any $s\in (0,1)$ when the $\mathcal{H}$ is a Sobolev RKHS.
Abstract:In this paper, we consider the generalization ability of deep wide feedforward ReLU neural networks defined on a bounded domain $\mathcal X \subset \mathbb R^{d}$. We first demonstrate that the generalization ability of the neural network can be fully characterized by that of the corresponding deep neural tangent kernel (NTK) regression. We then investigate on the spectral properties of the deep NTK and show that the deep NTK is positive definite on $\mathcal{X}$ and its eigenvalue decay rate is $(d+1)/d$. Thanks to the well established theories in kernel regression, we then conclude that multilayer wide neural networks trained by gradient descent with proper early stopping achieve the minimax rate, provided that the regression function lies in the reproducing kernel Hilbert space (RKHS) associated with the corresponding NTK. Finally, we illustrate that the overfitted multilayer wide neural networks can not generalize well on $\mathbb S^{d}$.