Abstract:Large language models (LLMs) have shown significant potential for robotics applications, particularly task planning, by harnessing their language comprehension and text generation capabilities. However, in applications such as household robotics, a critical gap remains in the personalization of these models to individual user preferences. We introduce LLM-Personalize, a novel framework with an optimization pipeline designed to personalize LLM planners for household robotics. Our LLM-Personalize framework features an LLM planner that performs iterative planning in multi-room, partially-observable household scenarios, making use of a scene graph constructed with local observations. The generated plan consists of a sequence of high-level actions which are subsequently executed by a controller. Central to our approach is the optimization pipeline, which combines imitation learning and iterative self-training to personalize the LLM planner. In particular, the imitation learning phase performs initial LLM alignment from demonstrations, and bootstraps the model to facilitate effective iterative self-training, which further explores and aligns the model to user preferences. We evaluate LLM-Personalize on Housekeep, a challenging simulated real-world 3D benchmark for household rearrangements, and show that LLM-Personalize achieves more than a 30 percent increase in success rate over existing LLM planners, showcasing significantly improved alignment with human preferences. Project page: https://donggehan.github.io/projectllmpersonalize/.
Abstract:Speech is a fundamental means of communication that can be seen to provide two channels for transmitting information: the lexical channel of which words are said, and the non-lexical channel of how they are spoken. Both channels shape listener expectations of upcoming communication; however, directly quantifying their relative effect on expectations is challenging. Previous attempts require spoken variations of lexically-equivalent dialogue turns or conspicuous acoustic manipulations. This paper introduces a generalised paradigm to study the value of non-lexical information in dialogue across unconstrained lexical content. By quantifying the perceptual value of the non-lexical channel with both accuracy and entropy reduction, we show that non-lexical information produces a consistent effect on expectations of upcoming dialogue: even when it leads to poorer discriminative turn judgements than lexical content alone, it yields higher consensus among participants.
Abstract:Explainable AI (XAI) techniques have been widely used to help explain and understand the output of deep learning models in fields such as image classification and Natural Language Processing. Interest in using XAI techniques to explain deep learning-based automatic speech recognition (ASR) is emerging. but there is not enough evidence on whether these explanations can be trusted. To address this, we adapt a state-of-the-art XAI technique from the image classification domain, Local Interpretable Model-Agnostic Explanations (LIME), to a model trained for a TIMIT-based phoneme recognition task. This simple task provides a controlled setting for evaluation while also providing expert annotated ground truth to assess the quality of explanations. We find a variant of LIME based on time partitioned audio segments, that we propose in this paper, produces the most reliable explanations, containing the ground truth 96% of the time in its top three audio segments.
Abstract:Holistic perception of affective attributes is an important human perceptual ability. However, this ability is far from being realized in current affective computing, as not all of the attributes are well studied and their interrelationships are poorly understood. In this work, we investigate the relationship between two affective attributes: personality and emotion, from a transfer learning perspective. Specifically, we transfer Transformer-based and wav2vec-based emotion recognition models to perceive personality from speech across corpora. Compared with previous studies, our results show that transferring emotion recognition is effective for personality perception. Moreoever, this allows for better use and exploration of small personality corpora. We also provide novel findings on the relationship between personality and emotion that will aid future research on holistic affect recognition.
Abstract:In Speech Emotion Recognition (SER), textual data is often used alongside audio signals to address their inherent variability. However, the reliance on human annotated text in most research hinders the development of practical SER systems. To overcome this challenge, we investigate how Automatic Speech Recognition (ASR) performs on emotional speech by analyzing the ASR performance on emotion corpora and examining the distribution of word errors and confidence scores in ASR transcripts to gain insight into how emotion affects ASR. We utilize four ASR systems, namely Kaldi ASR, wav2vec, Conformer, and Whisper, and three corpora: IEMOCAP, MOSI, and MELD to ensure generalizability. Additionally, we conduct text-based SER on ASR transcripts with increasing word error rates to investigate how ASR affects SER. The objective of this study is to uncover the relationship and mutual impact of ASR and SER, in order to facilitate ASR adaptation to emotional speech and the use of SER in real world.
Abstract:Fusing multiple modalities for affective computing tasks has proven effective for performance improvement. However, how multimodal fusion works is not well understood, and its use in the real world usually results in large model sizes. In this work, on sentiment and emotion analysis, we first analyze how the salient affective information in one modality can be affected by the other in crossmodal attention. We find that inter-modal incongruity exists at the latent level due to crossmodal attention. Based on this finding, we propose a lightweight model via Hierarchical Crossmodal Transformer with Modality Gating (HCT-MG), which determines a primary modality according to its contribution to the target task and then hierarchically incorporates auxiliary modalities to alleviate inter-modal incongruity and reduce information redundancy. The experimental evaluation on three benchmark datasets: CMU-MOSI, CMU-MOSEI, and IEMOCAP verifies the efficacy of our approach, showing that it: 1) outperforms major prior work by achieving competitive results and can successfully recognize hard samples; 2) mitigates the inter-modal incongruity at the latent level when modalities have mismatched affective tendencies; 3) reduces model size to less than 1M parameters while outperforming existing models of similar sizes.
Abstract:English is the most widely spoken language in the world, used daily by millions of people as a first or second language in many different contexts. As a result, there are many varieties of English. Although the great many advances in English automatic speech recognition (ASR) over the past decades, results are usually reported based on test datasets which fail to represent the diversity of English as spoken today around the globe. We present the first release of The Edinburgh International Accents of English Corpus (EdAcc). This dataset attempts to better represent the wide diversity of English, encompassing almost 40 hours of dyadic video call conversations between friends. Unlike other datasets, EdAcc includes a wide range of first and second-language varieties of English and a linguistic background profile of each speaker. Results on latest public, and commercial models show that EdAcc highlights shortcomings of current English ASR models. The best performing model, trained on 680 thousand hours of transcribed data, obtains an average of 19.7% word error rate (WER) -- in contrast to the 2.7% WER obtained when evaluated on US English clean read speech. Across all models, we observe a drop in performance on Indian, Jamaican, and Nigerian English speakers. Recordings, linguistic backgrounds, data statement, and evaluation scripts are released on our website (https://groups.inf.ed.ac.uk/edacc/) under CC-BY-SA license.
Abstract:We address quality assessment for neural network based ASR by providing explanations that help increase our understanding of the system and ultimately help build trust in the system. Compared to simple classification labels, explaining transcriptions is more challenging as judging their correctness is not straightforward and transcriptions as a variable-length sequence is not handled by existing interpretable machine learning models. We provide an explanation for an ASR transcription as a subset of audio frames that is both a minimal and sufficient cause of the transcription. To do this, we adapt existing explainable AI (XAI) techniques from image classification-Statistical Fault Localisation(SFL) and Causal. Additionally, we use an adapted version of Local Interpretable Model-Agnostic Explanations (LIME) for ASR as a baseline in our experiments. We evaluate the quality of the explanations generated by the proposed techniques over three different ASR ,Google API, the baseline model of Sphinx, Deepspeech and 100 audio samples from the Commonvoice dataset.
Abstract:The Odeuropa Challenge on Olfactory Object Recognition aims to foster the development of object detection in the visual arts and to promote an olfactory perspective on digital heritage. Object detection in historical artworks is particularly challenging due to varying styles and artistic periods. Moreover, the task is complicated due to the particularity and historical variance of predefined target objects, which exhibit a large intra-class variance, and the long tail distribution of the dataset labels, with some objects having only very few training examples. These challenges should encourage participants to create innovative approaches using domain adaptation or few-shot learning. We provide a dataset of 2647 artworks annotated with 20 120 tightly fit bounding boxes that are split into a training and validation set (public). A test set containing 1140 artworks and 15 480 annotations is kept private for the challenge evaluation.
Abstract:We investigate the effect of style and category similarity in multiple datasets used for object detection pretraining. We find that including an additional stage of object-detection pretraining can increase the detection performance considerably. While our experiments suggest that style similarities between pre-training and target datasets are less important than matching categories, further experiments are needed to verify this hypothesis.