Abstract:Recent advancements in robot navigation, especially with end-to-end learning approaches like reinforcement learning (RL), have shown remarkable efficiency and effectiveness. Yet, successful navigation still relies on two key capabilities: mapping and planning, whether explicit or implicit. Classical approaches use explicit mapping pipelines to register ego-centric observations into a coherent map frame for the planner. In contrast, end-to-end learning achieves this implicitly, often through recurrent neural networks (RNNs) that fuse current and past observations into a latent space for planning. While architectures such as LSTM and GRU capture temporal dependencies, our findings reveal a key limitation: their inability to perform effective spatial memorization. This skill is essential for transforming and integrating sequential observations from varying perspectives to build spatial representations that support downstream planning. To address this, we propose Spatially-Enhanced Recurrent Units (SRUs), a simple yet effective modification to existing RNNs, designed to enhance spatial memorization capabilities. We introduce an attention-based architecture with SRUs, enabling long-range navigation using a single forward-facing stereo camera. Regularization techniques are employed to ensure robust end-to-end recurrent training via RL. Experimental results show our approach improves long-range navigation by 23.5% compared to existing RNNs. Furthermore, with SRU memory, our method outperforms the RL baseline with explicit mapping and memory modules, achieving a 29.6% improvement in diverse environments requiring long-horizon mapping and memorization. Finally, we address the sim-to-real gap by leveraging large-scale pretraining on synthetic depth data, enabling zero-shot transfer to diverse and complex real-world environments.