Abstract:Orientation learning plays a pivotal role in many tasks. However, the rotation group SO(3) is a Riemannian manifold. As a result, the distortion caused by non-Euclidean geometric nature introduces difficulties to the incorporation of local constraints, especially for the simultaneous incorporation of multiple local constraints. To address this issue, we propose the Angle-Axis Space-based orientation representation method to solve several orientation learning problems, including orientation adaptation and minimization of angular acceleration. Specifically, we propose a weighted average mechanism in SO(3) based on the angle-axis representation method. Our main idea is to generate multiple trajectories by considering different local constraints at different basepoints. Then these multiple trajectories are fused to generate a smooth trajectory by our proposed weighted average mechanism, achieving the goal to incorporate multiple local constraints simultaneously. Compared with existing solution, ours can address the distortion issue and make the off-theshelf Euclidean learning algorithm be re-applicable in non-Euclidean space. Simulation and Experimental evaluations validate that our solution can not only adapt orientations towards arbitrary desired via-points and cope with angular acceleration constraints, but also incorporate multiple local constraints simultaneously to achieve extra benefits, e.g., achieving smaller acceleration costs.
Abstract:Achieving human-like dexterous robotic manipulation remains a central goal and a pivotal challenge in robotics. The development of Artificial Intelligence (AI) has allowed rapid progress in robotic manipulation. This survey summarizes the evolution of robotic manipulation from mechanical programming to embodied intelligence, alongside the transition from simple grippers to multi-fingered dexterous hands, outlining key characteristics and main challenges. Focusing on the current stage of embodied dexterous manipulation, we highlight recent advances in two critical areas: dexterous manipulation data collection (via simulation, human demonstrations, and teleoperation) and skill-learning frameworks (imitation and reinforcement learning). Then, based on the overview of the existing data collection paradigm and learning framework, three key challenges restricting the development of dexterous robotic manipulation are summarized and discussed.