Abstract:We present a self-supervised learning approach to learn audio-visual representations from video and audio. Our method uses contrastive learning for cross-modal discrimination of video from audio and vice versa. We show that optimizing for cross-modal discrimination, rather than within-modal discrimination, is important to learn good representations from video and audio. With this simple but powerful insight, our method achieves state-of-the-art results when finetuned on action recognition tasks. While recent work in contrastive learning defines positive and negative samples as individual instances, we generalize this definition by exploring cross-modal agreement. We group together multiple instances as positives by measuring their similarity in both the video and the audio feature spaces. Cross-modal agreement creates better positive and negative sets, and allows us to calibrate visual similarities by seeking within-modal discrimination of positive instances.
Abstract:The problem of counterfactual visual explanations is considered. A new family of discriminant explanations is introduced. These produce heatmaps that attribute high scores to image regions informative of a classifier prediction but not of a counter class. They connect attributive explanations, which are based on a single heat map, to counterfactual explanations, which account for both predicted class and counter class. The latter are shown to be computable by combination of two discriminant explanations, with reversed class pairs. It is argued that self-awareness, namely the ability to produce classification confidence scores, is important for the computation of discriminant explanations, which seek to identify regions where it is easy to discriminate between prediction and counter class. This suggests the computation of discriminant explanations by the combination of three attribution maps. The resulting counterfactual explanations are optimization free and thus much faster than previous methods. To address the difficulty of their evaluation, a proxy task and set of quantitative metrics are also proposed. Experiments under this protocol show that the proposed counterfactual explanations outperform the state of the art while achieving much higher speeds, for popular networks. In a human-learning machine teaching experiment, they are also shown to improve mean student accuracy from chance level to 95\%.
Abstract:Low-precision networks, with weights and activations quantized to low bit-width, are widely used to accelerate inference on edge devices. However, current solutions are uniform, using identical bit-width for all filters. This fails to account for the different sensitivities of different filters and is suboptimal. Mixed-precision networks address this problem, by tuning the bit-width to individual filter requirements. In this work, the problem of optimal mixed-precision network search (MPS) is considered. To circumvent its difficulties of discrete search space and combinatorial optimization, a new differentiable search architecture is proposed, with several novel contributions to advance the efficiency by leveraging the unique properties of the MPS problem. The resulting Efficient differentiable MIxed-Precision network Search (EdMIPS) method is effective at finding the optimal bit allocation for multiple popular networks, and can search a large model, e.g. Inception-V3, directly on ImageNet without proxy task in a reasonable amount of time. The learned mixed-precision networks significantly outperform their uniform counterparts.
Abstract:A volumetric attention(VA) module for 3D medical image segmentation and detection is proposed. VA attention is inspired by recent advances in video processing, enables 2.5D networks to leverage context information along the z direction, and allows the use of pretrained 2D detection models when training data is limited, as is often the case for medical applications. Its integration in the Mask R-CNN is shown to enable state-of-the-art performance on the Liver Tumor Segmentation (LiTS) Challenge, outperforming the previous challenge winner by 3.9 points and achieving top performance on the LiTS leader board at the time of paper submission. Detection experiments on the DeepLesion dataset also show that the addition of VA to existing object detectors enables a 69.1 sensitivity at 0.5 false positive per image, outperforming the best published results by 6.6 points.
Abstract:Multiview recognition has been well studied in the literature and achieves decent performance in object recognition and retrieval task. However, most previous works rely on supervised learning and some impractical underlying assumptions, such as the availability of all views in training and inference time. In this work, the problem of multiview self-supervised learning (MV-SSL) is investigated, where only image to object association is given. Given this setup, a novel surrogate task for self-supervised learning is proposed by pursuing "object invariant" representation. This is solved by randomly selecting an image feature of an object as object prototype, accompanied with multiview consistency regularization, which results in view invariant stochastic prototype embedding (VISPE). Experiments shows that the recognition and retrieval results using VISPE outperform that of other self-supervised learning methods on seen and unseen data. VISPE can also be applied to semi-supervised scenario and demonstrates robust performance with limited data available. Code is available at https://github.com/chihhuiho/VISPE
Abstract:A new paradigm is proposed for autonomous driving. The new paradigm lies between the end-to-end and pipelined approaches, and is inspired by how humans solve the problem. While it relies on scene understanding, the latter only considers objects that could originate hazard. These are denoted as action-inducing, since changes in their state should trigger vehicle actions. They also define a set of explanations for these actions, which should be produced jointly with the latter. An extension of the BDD100K dataset, annotated for a set of 4 actions and 21 explanations, is proposed. A new multi-task formulation of the problem, which optimizes the accuracy of both action commands and explanations, is then introduced. A CNN architecture is finally proposed to solve this problem, by combining reasoning about action inducing objects and global scene context. Experimental results show that the requirement of explanations improves the recognition of action-inducing objects, which in turn leads to better action predictions.
Abstract:We propose a robust spectrum sensing framework based on deep learning. The received signals at the secondary user's receiver are filtered, sampled and then directly fed into a convolutional neural network. Although this deep sensing is effective when operating in the same scenario as the collected training data, the sensing performance is degraded when it is applied in a different scenario with different wireless signals and propagation. We incorporate transfer learning into the framework to improve the robustness. Results validate the effectiveness as well as the robustness of the proposed deep spectrum sensing framework.
Abstract:Real-world applications of object recognition often require the solution of multiple tasks in a single platform. Under the standard paradigm of network fine-tuning, an entirely new CNN is learned per task, and the final network size is independent of task complexity. This is wasteful, since simple tasks require smaller networks than more complex tasks, and limits the number of tasks that can be solved simultaneously. To address these problems, we propose a transfer learning procedure, denoted NetTailor, in which layers of a pre-trained CNN are used as universal blocks that can be combined with small task-specific layers to generate new networks. Besides minimizing classification error, the new network is trained to mimic the internal activations of a strong unconstrained CNN, and minimize its complexity by the combination of 1) a soft-attention mechanism over blocks and 2) complexity regularization constraints. In this way, NetTailor can adapt the network architecture, not just its weights, to the target task. Experiments show that networks adapted to simple tasks, such as character or traffic sign recognition, become significantly smaller than those adapted to hard tasks, such as fine-grained recognition. More importantly, due to the modular nature of the procedure, this reduction in network complexity is achieved without compromise of either parameter sharing across tasks, or classification accuracy.
Abstract:The problem of multi-domain learning of deep networks is considered. An adaptive layer is induced per target domain and a novel procedure, denoted covariance normalization (CovNorm), proposed to reduce its parameters. CovNorm is a data driven method of fairly simple implementation, requiring two principal component analyzes (PCA) and fine-tuning of a mini-adaptation layer. Nevertheless, it is shown, both theoretically and experimentally, to have several advantages over previous approaches, such as batch normalization or geometric matrix approximations. Furthermore, CovNorm can be deployed both when target datasets are available sequentially or simultaneously. Experiments show that, in both cases, it has performance comparable to a fully fine-tuned network, using as few as 0.13% of the corresponding parameters per target domain.
Abstract:In object detection, the intersection over union (IoU) threshold is frequently used to define positives/negatives. The threshold used to train a detector defines its \textit{quality}. While the commonly used threshold of 0.5 leads to noisy (low-quality) detections, detection performance frequently degrades for larger thresholds. This paradox of high-quality detection has two causes: 1) overfitting, due to vanishing positive samples for large thresholds, and 2) inference-time quality mismatch between detector and test hypotheses. A multi-stage object detection architecture, the Cascade R-CNN, composed of a sequence of detectors trained with increasing IoU thresholds, is proposed to address these problems. The detectors are trained sequentially, using the output of a detector as training set for the next. This resampling progressively improves hypotheses quality, guaranteeing a positive training set of equivalent size for all detectors and minimizing overfitting. The same cascade is applied at inference, to eliminate quality mismatches between hypotheses and detectors. An implementation of the Cascade R-CNN without bells or whistles achieves state-of-the-art performance on the COCO dataset, and significantly improves high-quality detection on generic and specific object detection datasets, including VOC, KITTI, CityPerson, and WiderFace. Finally, the Cascade R-CNN is generalized to instance segmentation, with nontrivial improvements over the Mask R-CNN. To facilitate future research, two implementations are made available at \url{https://github.com/zhaoweicai/cascade-rcnn} (Caffe) and \url{https://github.com/zhaoweicai/Detectron-Cascade-RCNN} (Detectron).