Abstract:Large language models (LLMs) have rapidly evolved as the foundation of various natural language processing (NLP) applications. Despite their wide use cases, their understanding of culturally-related concepts and reasoning remains limited. Meantime, there is a significant need to enhance these models' cultural reasoning capabilities, especially concerning underrepresented regions. This paper introduces a novel pipeline for extracting high-quality, culturally-related instruction tuning datasets from vast unstructured corpora. We utilize a self-instruction generation pipeline to identify cultural concepts and trigger instruction. By integrating with a general-purpose instruction tuning dataset, our model demonstrates enhanced capabilities in recognizing and understanding regional cultural nuances, thereby enhancing its reasoning capabilities. We conduct experiments across three regions: Singapore, the Philippines, and the United States, achieving performance improvement of up to 6%. Our research opens new avenues for extracting cultural instruction tuning sets directly from unstructured data, setting a precedent for future innovations in the field.
Abstract:Multilingual proficiency presents a significant challenge for large language models (LLMs). English-centric models are usually suboptimal in other languages, particularly those that are linguistically distant from English. This performance discrepancy mainly stems from the imbalanced distribution of training data across languages during pre-training and instruction tuning stages. To address this problem, we propose a novel approach called CrossIn, which utilizes a mixed composition of cross-lingual instruction tuning data. Our method leverages the compressed representation shared by various languages to efficiently enhance the model's task-solving capabilities and multilingual proficiency within a single process. In addition, we introduce a multi-task and multi-faceted benchmark to evaluate the effectiveness of CrossIn. Experimental results demonstrate that our method substantially improves performance across tasks and languages, and we provide extensive insights into the impact of cross-lingual data volume and the integration of translation data on enhancing multilingual consistency and accuracy.
Abstract:As the rapidly advancing domain of natural language processing (NLP), large language models (LLMs) have emerged as powerful tools for interpreting human commands and generating text across various tasks. Nonetheless, the resilience of LLMs to handle text containing inherent errors, stemming from human interactions and collaborative systems, has not been thoroughly explored. Our study investigates the resilience of LLMs against five common types of disruptions including 1) ASR (Automatic Speech Recognition) errors, 2) OCR (Optical Character Recognition) errors, 3) grammatical mistakes, 4) typographical errors, and 5) distractive content. We aim to investigate how these models react by deliberately embedding these errors into instructions. Our findings reveal that while some LLMs show a degree of resistance to certain types of noise, their overall performance significantly suffers. This emphasizes the importance of further investigation into enhancing model resilience. In response to the observed decline in performance, our study also evaluates a "re-pass" strategy, designed to purify the instructions of noise before the LLMs process them. Our analysis indicates that correcting noisy instructions, particularly for open-source LLMs, presents significant challenges.
Abstract:Intelligent Tutoring Systems (ITSs) can provide personalized and self-paced learning experience. The emergence of large language models (LLMs) further enables better human-machine interaction, and facilitates the development of conversational ITSs in various disciplines such as math and language learning. In dialogic teaching, recognizing and adapting to individual characteristics can significantly enhance student engagement and learning efficiency. However, characterizing and simulating student's persona remain challenging in training and evaluating conversational ITSs. In this work, we propose a framework to construct profiles of different student groups by refining and integrating both cognitive and noncognitive aspects, and leverage LLMs for personality-aware student simulation in a language learning scenario. We further enhance the framework with multi-aspect validation, and conduct extensive analysis from both teacher and student perspectives. Our experimental results show that state-of-the-art LLMs can produce diverse student responses according to the given language ability and personality traits, and trigger teacher's adaptive scaffolding strategies.
Abstract:Intelligent tutoring systems (ITSs) that imitate human tutors and aim to provide immediate and customized instructions or feedback to learners have shown their effectiveness in education. With the emergence of generative artificial intelligence, large language models (LLMs) further entitle the systems to complex and coherent conversational interactions. These systems would be of great help in language education as it involves developing skills in communication, which, however, drew relatively less attention. Additionally, due to the complicated cognitive development at younger ages, more endeavors are needed for practical uses. Scaffolding refers to a teaching technique where teachers provide support and guidance to students for learning and developing new concepts or skills. It is an effective way to support diverse learning needs, goals, processes, and outcomes. In this work, we investigate how pedagogical instructions facilitate the scaffolding in ITSs, by conducting a case study on guiding children to describe images for language learning. We construct different types of scaffolding tutoring systems grounded in four fundamental learning theories: knowledge construction, inquiry-based learning, dialogic teaching, and zone of proximal development. For qualitative and quantitative analyses, we build and refine a seven-dimension rubric to evaluate the scaffolding process. In our experiment on GPT-4V, we observe that LLMs demonstrate strong potential to follow pedagogical instructions and achieve self-paced learning in different student groups. Moreover, we extend our evaluation framework from a manual to an automated approach, paving the way to benchmark various conversational tutoring systems.
Abstract:Current metrics for evaluating Dialogue State Tracking (DST) systems exhibit three primary limitations. They: i) erroneously presume a uniform distribution of slots throughout the dialog, ii) neglect to assign partial scores for individual turns, iii) frequently overestimate or underestimate performance by repeatedly counting the models' successful or failed predictions. To address these shortcomings, we introduce a novel metric: Granular Change Accuracy (GCA). GCA focuses on evaluating the predicted changes in dialogue state over the entire dialogue history. Benchmarking reveals that GCA effectively reduces biases arising from distribution uniformity and the positioning of errors across turns, resulting in a more precise evaluation. Notably, we find that these biases are particularly pronounced when evaluating few-shot or zero-shot trained models, becoming even more evident as the model's error rate increases. Hence, GCA offers significant promise, particularly for assessing models trained with limited resources. Our GCA implementation is a useful addition to the pool of DST metrics.
Abstract:Large Language Models (LLMs) have demonstrated significant potential in handling complex reasoning tasks through step-by-step rationale generation. However, recent studies have raised concerns regarding the hallucination and flaws in their reasoning process. Substantial efforts are being made to improve the reliability and faithfulness of the generated rationales. Some approaches model reasoning as planning, while others focus on annotating for process supervision. Nevertheless, the planning-based search process often results in high latency due to the frequent assessment of intermediate reasoning states and the extensive exploration space. Additionally, supervising the reasoning process with human annotation is costly and challenging to scale for LLM training. To address these issues, in this paper, we propose a framework to learn planning-based reasoning through direct preference optimization (DPO) on collected trajectories, which are ranked according to synthesized process rewards. Our results on challenging logical reasoning benchmarks demonstrate the effectiveness of our learning framework, showing that our 7B model can surpass the strong counterparts like GPT-3.5-Turbo.
Abstract:State-space models are a low-complexity alternative to transformers for encoding long sequences and capturing long-term dependencies. We propose LOCOST: an encoder-decoder architecture based on state-space models for conditional text generation with long context inputs. With a computational complexity of $O(L \log L)$, this architecture can handle significantly longer sequences than state-of-the-art models that are based on sparse attention patterns. We evaluate our model on a series of long document abstractive summarization tasks. The model reaches a performance level that is 93-96% comparable to the top-performing sparse transformers of the same size while saving up to 50% memory during training and up to 87% during inference. Additionally, LOCOST effectively handles input texts exceeding 600K tokens at inference time, setting new state-of-the-art results on full-book summarization and opening new perspectives for long input processing.
Abstract:Compared to large speech foundation models, small distilled models exhibit degraded noise robustness. The student's robustness can be improved by introducing noise at the inputs during pre-training. Despite this, using the standard distillation loss still yields a student with degraded performance. Thus, this paper proposes improving student robustness via distillation with correlation metrics. Teacher behavior is learned by maximizing the teacher and student cross-correlation matrix between their representations towards identity. Noise robustness is encouraged via the student's self-correlation minimization. The proposed method is agnostic of the teacher model and consistently outperforms the previous approach. This work also proposes an heuristic to weigh the importance of the two correlation terms automatically. Experiments show consistently better clean and noise generalization on Intent Classification, Keyword Spotting, and Automatic Speech Recognition tasks on SUPERB Challenge.
Abstract:The Transformer-based models with the multi-head self-attention mechanism are widely used in natural language processing, and provide state-of-the-art results. While the pre-trained language backbones are shown to implicitly capture certain linguistic knowledge, explicitly incorporating structure-aware features can bring about further improvement on the downstream tasks. However, such enhancement often requires additional neural components and increases training parameter size. In this work, we investigate the attention head selection and manipulation strategy for feature injection from a network pruning perspective, and conduct a case study on dialogue summarization. We first rank attention heads in a Transformer-based summarizer with layer-wise importance. We then select the underused heads through extensive analysis, and inject structure-aware features by manipulating the selected heads. Experimental results show that the importance-based head selection is effective for feature injection, and dialogue summarization can be improved by incorporating coreference information via head manipulation.