Alert button
Picture for Michael Wray

Michael Wray

Alert button

Ego-Exo4D: Understanding Skilled Human Activity from First- and Third-Person Perspectives

Nov 30, 2023
Kristen Grauman, Andrew Westbury, Lorenzo Torresani, Kris Kitani, Jitendra Malik, Triantafyllos Afouras, Kumar Ashutosh, Vijay Baiyya, Siddhant Bansal, Bikram Boote, Eugene Byrne, Zach Chavis, Joya Chen, Feng Cheng, Fu-Jen Chu, Sean Crane, Avijit Dasgupta, Jing Dong, Maria Escobar, Cristhian Forigua, Abrham Gebreselasie, Sanjay Haresh, Jing Huang, Md Mohaiminul Islam, Suyog Jain, Rawal Khirodkar, Devansh Kukreja, Kevin J Liang, Jia-Wei Liu, Sagnik Majumder, Yongsen Mao, Miguel Martin, Effrosyni Mavroudi, Tushar Nagarajan, Francesco Ragusa, Santhosh Kumar Ramakrishnan, Luigi Seminara, Arjun Somayazulu, Yale Song, Shan Su, Zihui Xue, Edward Zhang, Jinxu Zhang, Angela Castillo, Changan Chen, Xinzhu Fu, Ryosuke Furuta, Cristina Gonzalez, Prince Gupta, Jiabo Hu, Yifei Huang, Yiming Huang, Weslie Khoo, Anush Kumar, Robert Kuo, Sach Lakhavani, Miao Liu, Mi Luo, Zhengyi Luo, Brighid Meredith, Austin Miller, Oluwatumininu Oguntola, Xiaqing Pan, Penny Peng, Shraman Pramanick, Merey Ramazanova, Fiona Ryan, Wei Shan, Kiran Somasundaram, Chenan Song, Audrey Southerland, Masatoshi Tateno, Huiyu Wang, Yuchen Wang, Takuma Yagi, Mingfei Yan, Xitong Yang, Zecheng Yu, Shengxin Cindy Zha, Chen Zhao, Ziwei Zhao, Zhifan Zhu, Jeff Zhuo, Pablo Arbelaez, Gedas Bertasius, David Crandall, Dima Damen, Jakob Engel, Giovanni Maria Farinella, Antonino Furnari, Bernard Ghanem, Judy Hoffman, C. V. Jawahar, Richard Newcombe, Hyun Soo Park, James M. Rehg, Yoichi Sato, Manolis Savva, Jianbo Shi, Mike Zheng Shou, Michael Wray

We present Ego-Exo4D, a diverse, large-scale multimodal multiview video dataset and benchmark challenge. Ego-Exo4D centers around simultaneously-captured egocentric and exocentric video of skilled human activities (e.g., sports, music, dance, bike repair). More than 800 participants from 13 cities worldwide performed these activities in 131 different natural scene contexts, yielding long-form captures from 1 to 42 minutes each and 1,422 hours of video combined. The multimodal nature of the dataset is unprecedented: the video is accompanied by multichannel audio, eye gaze, 3D point clouds, camera poses, IMU, and multiple paired language descriptions -- including a novel "expert commentary" done by coaches and teachers and tailored to the skilled-activity domain. To push the frontier of first-person video understanding of skilled human activity, we also present a suite of benchmark tasks and their annotations, including fine-grained activity understanding, proficiency estimation, cross-view translation, and 3D hand/body pose. All resources will be open sourced to fuel new research in the community.

Viaarxiv icon

Learning Temporal Sentence Grounding From Narrated EgoVideos

Oct 26, 2023
Kevin Flanagan, Dima Damen, Michael Wray

The onset of long-form egocentric datasets such as Ego4D and EPIC-Kitchens presents a new challenge for the task of Temporal Sentence Grounding (TSG). Compared to traditional benchmarks on which this task is evaluated, these datasets offer finer-grained sentences to ground in notably longer videos. In this paper, we develop an approach for learning to ground sentences in these datasets using only narrations and their corresponding rough narration timestamps. We propose to artificially merge clips to train for temporal grounding in a contrastive manner using text-conditioning attention. This Clip Merging (CliMer) approach is shown to be effective when compared with a high performing TSG method -- e.g. mean R@1 improves from 3.9 to 5.7 on Ego4D and from 10.7 to 13.0 on EPIC-Kitchens. Code and data splits available from: https://github.com/keflanagan/CliMer

* Accepted in BMVC 2023 
Viaarxiv icon

ConTra: (Con)text (Tra)nsformer for Cross-Modal Video Retrieval

Oct 09, 2022
Adriano Fragomeni, Michael Wray, Dima Damen

Figure 1 for ConTra: (Con)text (Tra)nsformer for Cross-Modal Video Retrieval
Figure 2 for ConTra: (Con)text (Tra)nsformer for Cross-Modal Video Retrieval
Figure 3 for ConTra: (Con)text (Tra)nsformer for Cross-Modal Video Retrieval
Figure 4 for ConTra: (Con)text (Tra)nsformer for Cross-Modal Video Retrieval

In this paper, we re-examine the task of cross-modal clip-sentence retrieval, where the clip is part of a longer untrimmed video. When the clip is short or visually ambiguous, knowledge of its local temporal context (i.e. surrounding video segments) can be used to improve the retrieval performance. We propose Context Transformer (ConTra); an encoder architecture that models the interaction between a video clip and its local temporal context in order to enhance its embedded representations. Importantly, we supervise the context transformer using contrastive losses in the cross-modal embedding space. We explore context transformers for video and text modalities. Results consistently demonstrate improved performance on three datasets: YouCook2, EPIC-KITCHENS and a clip-sentence version of ActivityNet Captions. Exhaustive ablation studies and context analysis show the efficacy of the proposed method.

* Accepted in ACCV 2022 
Viaarxiv icon

Egocentric Video-Language Pretraining @ Ego4D Challenge 2022

Jul 04, 2022
Kevin Qinghong Lin, Alex Jinpeng Wang, Mattia Soldan, Michael Wray, Rui Yan, Eric Zhongcong Xu, Difei Gao, Rongcheng Tu, Wenzhe Zhao, Weijie Kong, Chengfei Cai, Hongfa Wang, Dima Damen, Bernard Ghanem, Wei Liu, Mike Zheng Shou

Figure 1 for Egocentric Video-Language Pretraining @ Ego4D Challenge 2022
Figure 2 for Egocentric Video-Language Pretraining @ Ego4D Challenge 2022
Figure 3 for Egocentric Video-Language Pretraining @ Ego4D Challenge 2022
Figure 4 for Egocentric Video-Language Pretraining @ Ego4D Challenge 2022

In this report, we propose a video-language pretraining (VLP) based solution \cite{kevin2022egovlp} for four Ego4D challenge tasks, including Natural Language Query (NLQ), Moment Query (MQ), Object State Change Classification (OSCC), and PNR Localization (PNR). Especially, we exploit the recently released Ego4D dataset \cite{grauman2021ego4d} to pioneer Egocentric VLP from pretraining dataset, pretraining objective, and development set. Based on the above three designs, we develop a pretrained video-language model that is able to transfer its egocentric video-text representation or video-only representation to several video downstream tasks. Our Egocentric VLP achieves 10.46R@1&IoU @0.3 on NLQ, 10.33 mAP on MQ, 74% Acc on OSCC, 0.67 sec error on PNR. The code is available at https://github.com/showlab/EgoVLP.

* To appeared in CVPRW22. 4 pages, 2 figures, 5 tables. Code: https://github.com/showlab/EgoVLP. arXiv admin note: substantial text overlap with arXiv:2206.01670. substantial text overlap with arXiv:2207.01334 
Viaarxiv icon

Egocentric Video-Language Pretraining

Jun 03, 2022
Kevin Qinghong Lin, Alex Jinpeng Wang, Mattia Soldan, Michael Wray, Rui Yan, Eric Zhongcong Xu, Difei Gao, Rongcheng Tu, Wenzhe Zhao, Weijie Kong, Chengfei Cai, Hongfa Wang, Dima Damen, Bernard Ghanem, Wei Liu, Mike Zheng Shou

Figure 1 for Egocentric Video-Language Pretraining
Figure 2 for Egocentric Video-Language Pretraining
Figure 3 for Egocentric Video-Language Pretraining
Figure 4 for Egocentric Video-Language Pretraining

Video-Language Pretraining (VLP), aiming to learn transferable representation to advance a wide range of video-text downstream tasks, has recently received increasing attention. Dominant works that achieve strong performance rely on large-scale, 3rd-person video-text datasets, such as HowTo100M. In this work, we exploit the recently released Ego4D dataset to pioneer Egocentric VLP along three directions. (i) We create EgoClip, a 1st-person video-text pretraining dataset comprising 3.8M clip-text pairs well-chosen from Ego4D, covering a large variety of human daily activities. (ii) We propose a novel pretraining objective, dubbed as EgoNCE, which adapts video-text contrastive learning to egocentric domain by mining egocentric-aware positive and negative samples. (iii) We introduce EgoMCQ, a development benchmark that is close to EgoClip and hence can support effective validation and fast exploration of our design decisions regarding EgoClip and EgoNCE. Furthermore, we demonstrate strong performance on five egocentric downstream tasks across three datasets: video-text retrieval on EPIC-KITCHENS-100; action recognition on Charades-Ego; and natural language query, moment query, and object state change classification on Ego4D challenge benchmarks. The dataset and code will be available at https://github.com/showlab/EgoVLP.

* Preprint. 22 pages, 13 figures, 11 tables. Code: https://github.com/showlab/EgoVLP 
Viaarxiv icon

Domain Adaptation in Multi-View Embedding for Cross-Modal Video Retrieval

Oct 25, 2021
Jonathan Munro, Michael Wray, Diane Larlus, Gabriela Csurka, Dima Damen

Figure 1 for Domain Adaptation in Multi-View Embedding for Cross-Modal Video Retrieval
Figure 2 for Domain Adaptation in Multi-View Embedding for Cross-Modal Video Retrieval
Figure 3 for Domain Adaptation in Multi-View Embedding for Cross-Modal Video Retrieval
Figure 4 for Domain Adaptation in Multi-View Embedding for Cross-Modal Video Retrieval

Given a gallery of uncaptioned video sequences, this paper considers the task of retrieving videos based on their relevance to an unseen text query. To compensate for the lack of annotations, we rely instead on a related video gallery composed of video-caption pairs, termed the source gallery, albeit with a domain gap between its videos and those in the target gallery. We thus introduce the problem of Unsupervised Domain Adaptation for Cross-modal Video Retrieval, along with a new benchmark on fine-grained actions. We propose a novel iterative domain alignment method by means of pseudo-labelling target videos and cross-domain (i.e. source-target) ranking. Our approach adapts the embedding space to the target gallery, consistently outperforming source-only as well as marginal and conditional alignment methods.

* 15 pages 
Viaarxiv icon

Ego4D: Around the World in 3,000 Hours of Egocentric Video

Oct 13, 2021
Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, Miguel Martin, Tushar Nagarajan, Ilija Radosavovic, Santhosh Kumar Ramakrishnan, Fiona Ryan, Jayant Sharma, Michael Wray, Mengmeng Xu, Eric Zhongcong Xu, Chen Zhao, Siddhant Bansal, Dhruv Batra, Vincent Cartillier, Sean Crane, Tien Do, Morrie Doulaty, Akshay Erapalli, Christoph Feichtenhofer, Adriano Fragomeni, Qichen Fu, Christian Fuegen, Abrham Gebreselasie, Cristina Gonzalez, James Hillis, Xuhua Huang, Yifei Huang, Wenqi Jia, Weslie Khoo, Jachym Kolar, Satwik Kottur, Anurag Kumar, Federico Landini, Chao Li, Yanghao Li, Zhenqiang Li, Karttikeya Mangalam, Raghava Modhugu, Jonathan Munro, Tullie Murrell, Takumi Nishiyasu, Will Price, Paola Ruiz Puentes, Merey Ramazanova, Leda Sari, Kiran Somasundaram, Audrey Southerland, Yusuke Sugano, Ruijie Tao, Minh Vo, Yuchen Wang, Xindi Wu, Takuma Yagi, Yunyi Zhu, Pablo Arbelaez, David Crandall, Dima Damen, Giovanni Maria Farinella, Bernard Ghanem, Vamsi Krishna Ithapu, C. V. Jawahar, Hanbyul Joo, Kris Kitani, Haizhou Li, Richard Newcombe, Aude Oliva, Hyun Soo Park, James M. Rehg, Yoichi Sato, Jianbo Shi, Mike Zheng Shou, Antonio Torralba, Lorenzo Torresani, Mingfei Yan, Jitendra Malik

Figure 1 for Ego4D: Around the World in 3,000 Hours of Egocentric Video
Figure 2 for Ego4D: Around the World in 3,000 Hours of Egocentric Video
Figure 3 for Ego4D: Around the World in 3,000 Hours of Egocentric Video
Figure 4 for Ego4D: Around the World in 3,000 Hours of Egocentric Video

We introduce Ego4D, a massive-scale egocentric video dataset and benchmark suite. It offers 3,025 hours of daily-life activity video spanning hundreds of scenarios (household, outdoor, workplace, leisure, etc.) captured by 855 unique camera wearers from 74 worldwide locations and 9 different countries. The approach to collection is designed to uphold rigorous privacy and ethics standards with consenting participants and robust de-identification procedures where relevant. Ego4D dramatically expands the volume of diverse egocentric video footage publicly available to the research community. Portions of the video are accompanied by audio, 3D meshes of the environment, eye gaze, stereo, and/or synchronized videos from multiple egocentric cameras at the same event. Furthermore, we present a host of new benchmark challenges centered around understanding the first-person visual experience in the past (querying an episodic memory), present (analyzing hand-object manipulation, audio-visual conversation, and social interactions), and future (forecasting activities). By publicly sharing this massive annotated dataset and benchmark suite, we aim to push the frontier of first-person perception. Project page: https://ego4d-data.org/

Viaarxiv icon

On Semantic Similarity in Video Retrieval

Mar 18, 2021
Michael Wray, Hazel Doughty, Dima Damen

Figure 1 for On Semantic Similarity in Video Retrieval
Figure 2 for On Semantic Similarity in Video Retrieval
Figure 3 for On Semantic Similarity in Video Retrieval
Figure 4 for On Semantic Similarity in Video Retrieval

Current video retrieval efforts all found their evaluation on an instance-based assumption, that only a single caption is relevant to a query video and vice versa. We demonstrate that this assumption results in performance comparisons often not indicative of models' retrieval capabilities. We propose a move to semantic similarity video retrieval, where (i) multiple videos/captions can be deemed equally relevant, and their relative ranking does not affect a method's reported performance and (ii) retrieved videos/captions are ranked by their similarity to a query. We propose several proxies to estimate semantic similarities in large-scale retrieval datasets, without additional annotations. Our analysis is performed on three commonly used video retrieval datasets (MSR-VTT, YouCook2 and EPIC-KITCHENS).

* Accepted in CVPR 2021. Project Page: https://mwray.github.io/SSVR/ 
Viaarxiv icon

Supervision Levels Scale (SLS)

Aug 22, 2020
Dima Damen, Michael Wray

Figure 1 for Supervision Levels Scale (SLS)
Figure 2 for Supervision Levels Scale (SLS)
Figure 3 for Supervision Levels Scale (SLS)
Figure 4 for Supervision Levels Scale (SLS)

We propose a three-dimensional discrete and incremental scale to encode a method's level of supervision - i.e. the data and labels used when training a model to achieve a given performance. We capture three aspects of supervision, that are known to give methods an advantage while requiring additional costs: pre-training, training labels and training data. The proposed three-dimensional scale can be included in result tables or leaderboards to handily compare methods not only by their performance, but also by the level of data supervision utilised by each method. The Supervision Levels Scale (SLS) is first presented generally fo any task/dataset/challenge. It is then applied to the EPIC-KITCHENS-100 dataset, to be used for the various leaderboards and challenges associated with this dataset.

Viaarxiv icon

Rescaling Egocentric Vision

Jun 23, 2020
Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Antonino Furnari, Evangelos Kazakos, Jian Ma, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, Michael Wray

Figure 1 for Rescaling Egocentric Vision
Figure 2 for Rescaling Egocentric Vision
Figure 3 for Rescaling Egocentric Vision
Figure 4 for Rescaling Egocentric Vision

This paper introduces EPIC-KITCHENS-100, the largest annotated egocentric dataset - 100 hrs, 20M frames, 90K actions - of wearable videos capturing long-term unscripted activities in 45 environments. This extends our previous dataset (EPIC-KITCHENS-55), released in 2018, resulting in more action segments (+128%), environments (+41%) and hours (+84%), using a novel annotation pipeline that allows denser and more complete annotations of fine-grained actions (54% more actions per minute). We evaluate the "test of time" - i.e. whether models trained on data collected in 2018 can generalise to new footage collected under the same hypotheses albeit "two years on". The dataset is aligned with 6 challenges: action recognition (full and weak supervision), detection, anticipation, retrieval (from captions), as well as unsupervised domain adaptation for action recognition. For each challenge, we define the task, provide baselines and evaluation metrics. Our dataset and challenge leaderboards will be made publicly available.

* Dataset available from: http://epic-kitchens.github.io/ 
Viaarxiv icon