Alert button
Picture for Michael R. DeWeese

Michael R. DeWeese

Alert button

Neural Tangent Kernel Eigenvalues Accurately Predict Generalization

Add code
Bookmark button
Alert button
Oct 13, 2021
James B. Simon, Madeline Dickens, Michael R. DeWeese

Figure 1 for Neural Tangent Kernel Eigenvalues Accurately Predict Generalization
Figure 2 for Neural Tangent Kernel Eigenvalues Accurately Predict Generalization
Figure 3 for Neural Tangent Kernel Eigenvalues Accurately Predict Generalization
Figure 4 for Neural Tangent Kernel Eigenvalues Accurately Predict Generalization
Viaarxiv icon

On the Power of Shallow Learning

Add code
Bookmark button
Alert button
Jun 06, 2021
James B. Simon, Sajant Anand, Michael R. DeWeese

Figure 1 for On the Power of Shallow Learning
Figure 2 for On the Power of Shallow Learning
Figure 3 for On the Power of Shallow Learning
Viaarxiv icon

A new method for parameter estimation in probabilistic models: Minimum probability flow

Add code
Bookmark button
Alert button
Jul 17, 2020
Jascha Sohl-Dickstein, Peter Battaglino, Michael R. DeWeese

Figure 1 for A new method for parameter estimation in probabilistic models: Minimum probability flow
Figure 2 for A new method for parameter estimation in probabilistic models: Minimum probability flow
Figure 3 for A new method for parameter estimation in probabilistic models: Minimum probability flow
Viaarxiv icon

Critical Point-Finding Methods Reveal Gradient-Flat Regions of Deep Network Losses

Add code
Bookmark button
Alert button
Mar 23, 2020
Charles G. Frye, James Simon, Neha S. Wadia, Andrew Ligeralde, Michael R. DeWeese, Kristofer E. Bouchard

Figure 1 for Critical Point-Finding Methods Reveal Gradient-Flat Regions of Deep Network Losses
Figure 2 for Critical Point-Finding Methods Reveal Gradient-Flat Regions of Deep Network Losses
Figure 3 for Critical Point-Finding Methods Reveal Gradient-Flat Regions of Deep Network Losses
Figure 4 for Critical Point-Finding Methods Reveal Gradient-Flat Regions of Deep Network Losses
Viaarxiv icon

Design of optical neural networks with component imprecisions

Add code
Bookmark button
Alert button
Dec 13, 2019
Michael Y. -S. Fang, Sasikanth Manipatruni, Casimir Wierzynski, Amir Khosrowshahi, Michael R. DeWeese

Figure 1 for Design of optical neural networks with component imprecisions
Figure 2 for Design of optical neural networks with component imprecisions
Figure 3 for Design of optical neural networks with component imprecisions
Figure 4 for Design of optical neural networks with component imprecisions
Viaarxiv icon

Numerically Recovering the Critical Points of a Deep Linear Autoencoder

Add code
Bookmark button
Alert button
Jan 29, 2019
Charles G. Frye, Neha S. Wadia, Michael R. DeWeese, Kristofer E. Bouchard

Figure 1 for Numerically Recovering the Critical Points of a Deep Linear Autoencoder
Figure 2 for Numerically Recovering the Critical Points of a Deep Linear Autoencoder
Figure 3 for Numerically Recovering the Critical Points of a Deep Linear Autoencoder
Figure 4 for Numerically Recovering the Critical Points of a Deep Linear Autoencoder
Viaarxiv icon

Hamiltonian Monte Carlo Without Detailed Balance

Add code
Bookmark button
Alert button
Mar 25, 2016
Jascha Sohl-Dickstein, Mayur Mudigonda, Michael R. DeWeese

Figure 1 for Hamiltonian Monte Carlo Without Detailed Balance
Figure 2 for Hamiltonian Monte Carlo Without Detailed Balance
Figure 3 for Hamiltonian Monte Carlo Without Detailed Balance
Figure 4 for Hamiltonian Monte Carlo Without Detailed Balance
Viaarxiv icon

A Markov Jump Process for More Efficient Hamiltonian Monte Carlo

Add code
Bookmark button
Alert button
Oct 11, 2015
Andrew B. Berger, Mayur Mudigonda, Michael R. DeWeese, Jascha Sohl-Dickstein

Figure 1 for A Markov Jump Process for More Efficient Hamiltonian Monte Carlo
Figure 2 for A Markov Jump Process for More Efficient Hamiltonian Monte Carlo
Figure 3 for A Markov Jump Process for More Efficient Hamiltonian Monte Carlo
Figure 4 for A Markov Jump Process for More Efficient Hamiltonian Monte Carlo
Viaarxiv icon

Time Resolution Dependence of Information Measures for Spiking Neurons: Atoms, Scaling, and Universality

Add code
Bookmark button
Alert button
Apr 18, 2015
Sarah E. Marzen, Michael R. DeWeese, James P. Crutchfield

Figure 1 for Time Resolution Dependence of Information Measures for Spiking Neurons: Atoms, Scaling, and Universality
Figure 2 for Time Resolution Dependence of Information Measures for Spiking Neurons: Atoms, Scaling, and Universality
Figure 3 for Time Resolution Dependence of Information Measures for Spiking Neurons: Atoms, Scaling, and Universality
Figure 4 for Time Resolution Dependence of Information Measures for Spiking Neurons: Atoms, Scaling, and Universality
Viaarxiv icon

Minimum Probability Flow Learning

Add code
Bookmark button
Alert button
Sep 25, 2011
Jascha Sohl-Dickstein, Peter Battaglino, Michael R. DeWeese

Figure 1 for Minimum Probability Flow Learning
Figure 2 for Minimum Probability Flow Learning
Figure 3 for Minimum Probability Flow Learning
Figure 4 for Minimum Probability Flow Learning
Viaarxiv icon