Get our free extension to see links to code for papers anywhere online!Free extension: code links for papers anywhere!Free add-on: See code for papers anywhere!

Shabarish Chenakkod, Michał Dereziński, Xiaoyu Dong, Mark Rudelson

A random $m\times n$ matrix $S$ is an oblivious subspace embedding (OSE) with parameters $\epsilon>0$, $\delta\in(0,1/3)$ and $d\leq m\leq n$, if for any $d$-dimensional subspace $W\subseteq R^n$, $P\big(\,\forall_{x\in W}\ (1+\epsilon)^{-1}\|x\|\leq\|Sx\|\leq (1+\epsilon)\|x\|\,\big)\geq 1-\delta.$ It is known that the embedding dimension of an OSE must satisfy $m\geq d$, and for any $\theta > 0$, a Gaussian embedding matrix with $m\geq (1+\theta) d$ is an OSE with $\epsilon = O_\theta(1)$. However, such optimal embedding dimension is not known for other embeddings. Of particular interest are sparse OSEs, having $s\ll m$ non-zeros per column, with applications to problems such as least squares regression and low-rank approximation. We show that, given any $\theta > 0$, an $m\times n$ random matrix $S$ with $m\geq (1+\theta)d$ consisting of randomly sparsified $\pm1/\sqrt s$ entries and having $s= O(\log^4(d))$ non-zeros per column, is an oblivious subspace embedding with $\epsilon = O_{\theta}(1)$. Our result addresses the main open question posed by Nelson and Nguyen (FOCS 2013), who conjectured that sparse OSEs can achieve $m=O(d)$ embedding dimension, and it improves on $m=O(d\log(d))$ shown by Cohen (SODA 2016). We use this to construct the first oblivious subspace embedding with $O(d)$ embedding dimension that can be applied faster than current matrix multiplication time, and to obtain an optimal single-pass algorithm for least squares regression. We further extend our results to construct even sparser non-oblivious embeddings, leading to the first subspace embedding with low distortion $\epsilon=o(1)$ and optimal embedding dimension $m=O(d/\epsilon^2)$ that can be applied in current matrix multiplication time.

Via

Younghyun Cho, James W. Demmel, Michał Dereziński, Haoyun Li, Hengrui Luo, Michael W. Mahoney, Riley J. Murray

Algorithms from Randomized Numerical Linear Algebra (RandNLA) are known to be effective in handling high-dimensional computational problems, providing high-quality empirical performance as well as strong probabilistic guarantees. However, their practical application is complicated by the fact that the user needs to set various algorithm-specific tuning parameters which are different than those used in traditional NLA. This paper demonstrates how a surrogate-based autotuning approach can be used to address fundamental problems of parameter selection in RandNLA algorithms. In particular, we provide a detailed investigation of surrogate-based autotuning for sketch-and-precondition (SAP) based randomized least squares methods, which have been one of the great success stories in modern RandNLA. Empirical results show that our surrogate-based autotuning approach can achieve near-optimal performance with much less tuning cost than a random search (up to about 4x fewer trials of different parameter configurations). Moreover, while our experiments focus on least squares, our results demonstrate a general-purpose autotuning pipeline applicable to any kind of RandNLA algorithm.

Via

Michał Dereziński, Elizaveta Rebrova

Sketch-and-project is a framework which unifies many known iterative methods for solving linear systems and their variants, as well as further extensions to non-linear optimization problems. It includes popular methods such as randomized Kaczmarz, coordinate descent, variants of the Newton method in convex optimization, and others. In this paper, we obtain sharp guarantees for the convergence rate of sketch-and-project methods via new tight spectral bounds for the expected sketched projection matrix. Our estimates reveal a connection between the sketch-and-project convergence rate and the approximation error of another well-known but seemingly unrelated family of algorithms, which use sketching to accelerate popular matrix factorizations such as QR and SVD. This connection brings us closer to precisely quantifying how the performance of sketch-and-project solvers depends on their sketch size. Our analysis covers not only Gaussian and sub-gaussian sketching matrices, but also a family of efficient sparse sketching methods known as LESS embeddings. Our experiments back up the theory and demonstrate that even extremely sparse sketches show the same convergence properties in practice.

Via

Michał Dereziński

Algorithmic Gaussianization is a phenomenon that can arise when using randomized sketching or sampling methods to produce smaller representations of large datasets: For certain tasks, these sketched representations have been observed to exhibit many robust performance characteristics that are known to occur when a data sample comes from a sub-gaussian random design, which is a powerful statistical model of data distributions. However, this phenomenon has only been studied for specific tasks and metrics, or by relying on computationally expensive methods. We address this by providing an algorithmic framework for gaussianizing data distributions via averaging, proving that it is possible to efficiently construct data sketches that are nearly indistinguishable (in terms of total variation distance) from sub-gaussian random designs. In particular, relying on a recently introduced sketching technique called Leverage Score Sparsified (LESS) embeddings, we show that one can construct an $n\times d$ sketch of an $N\times d$ matrix $A$, where $n\ll N$, that is nearly indistinguishable from a sub-gaussian design, in time $O(\text{nnz}(A)\log N + nd^2)$, where $\text{nnz}(A)$ is the number of non-zero entries in $A$. As a consequence, strong statistical guarantees and precise asymptotics available for the estimators produced from sub-gaussian designs (e.g., for least squares and Lasso regression, covariance estimation, low-rank approximation, etc.) can be straightforwardly adapted to our sketching framework. We illustrate this with a new approximation guarantee for sketched least squares, among other examples.

Via

Michał Dereziński

Stochastic variance reduction has proven effective at accelerating first-order algorithms for solving convex finite-sum optimization tasks such as empirical risk minimization. Incorporating additional second-order information has proven helpful in further improving the performance of these first-order methods. However, comparatively little is known about the benefits of using variance reduction to accelerate popular stochastic second-order methods such as Subsampled Newton. To address this, we propose Stochastic Variance-Reduced Newton (SVRN), a finite-sum minimization algorithm which enjoys all the benefits of second-order methods: simple unit step size, easily parallelizable large-batch operations, and fast local convergence, while at the same time taking advantage of variance reduction to achieve improved convergence rates (per data pass) for smooth and strongly convex problems. We show that SVRN can accelerate many stochastic second-order methods (such as Subsampled Newton) as well as iterative least squares solvers (such as Iterative Hessian Sketch), and it compares favorably to popular first-order methods with variance reduction.

Via

Sen Na, Michał Dereziński, Michael W. Mahoney

We consider minimizing a smooth and strongly convex objective function using a stochastic Newton method. At each iteration, the algorithm is given an oracle access to a stochastic estimate of the Hessian matrix. The oracle model includes popular algorithms such as the Subsampled Newton and Newton Sketch, which can efficiently construct stochastic Hessian estimates for many tasks. Despite using second-order information, these existing methods do not exhibit superlinear convergence, unless the stochastic noise is gradually reduced to zero during the iteration, which would lead to a computational blow-up in the per-iteration cost. We address this limitation with Hessian averaging: instead of using the most recent Hessian estimate, our algorithm maintains an average of all past estimates. This reduces the stochastic noise while avoiding the computational blow-up. We show that this scheme enjoys local $Q$-superlinear convergence with a non-asymptotic rate of $(\Upsilon\sqrt{\log (t)/t}\,)^{t}$, where $\Upsilon$ is proportional to the level of stochastic noise in the Hessian oracle. A potential drawback of this (uniform averaging) approach is that the averaged estimates contain Hessian information from the global phase of the iteration, i.e., before the iterates converge to a local neighborhood. This leads to a distortion that may substantially delay the superlinear convergence until long after the local neighborhood is reached. To address this drawback, we study a number of weighted averaging schemes that assign larger weights to recent Hessians, so that the superlinear convergence arises sooner, albeit with a slightly slower rate. Remarkably, we show that there exists a universal weighted averaging scheme that transitions to local convergence at an optimal stage, and still enjoys a superlinear convergence~rate nearly (up to a logarithmic factor) matching that of uniform Hessian averaging.

Via

Michał Dereziński, Jonathan Lacotte, Mert Pilanci, Michael W. Mahoney

In second-order optimization, a potential bottleneck can be computing the Hessian matrix of the optimized function at every iteration. Randomized sketching has emerged as a powerful technique for constructing estimates of the Hessian which can be used to perform approximate Newton steps. This involves multiplication by a random sketching matrix, which introduces a trade-off between the computational cost of sketching and the convergence rate of the optimization algorithm. A theoretically desirable but practically much too expensive choice is to use a dense Gaussian sketching matrix, which produces unbiased estimates of the exact Newton step and which offers strong problem-independent convergence guarantees. We show that the Gaussian sketching matrix can be drastically sparsified, significantly reducing the computational cost of sketching, without substantially affecting its convergence properties. This approach, called Newton-LESS, is based on a recently introduced sketching technique: LEverage Score Sparsified (LESS) embeddings. We prove that Newton-LESS enjoys nearly the same problem-independent local convergence rate as Gaussian embeddings, not just up to constant factors but even down to lower order terms, for a large class of optimization tasks. In particular, this leads to a new state-of-the-art convergence result for an iterative least squares solver. Finally, we extend LESS embeddings to include uniformly sparsified random sign matrices which can be implemented efficiently and which perform well in numerical experiments.

Via

Xue Chen, Michał Dereziński

Consider a regression problem where the learner is given a large collection of $d$-dimensional data points, but can only query a small subset of the real-valued labels. How many queries are needed to obtain a $1+\epsilon$ relative error approximation of the optimum? While this problem has been extensively studied for least squares regression, little is known for other losses. An important example is least absolute deviation regression ($\ell_1$ regression) which enjoys superior robustness to outliers compared to least squares. We develop a new framework for analyzing importance sampling methods in regression problems, which enables us to show that the query complexity of least absolute deviation regression is $\Theta(d/\epsilon^2)$ up to logarithmic factors. We further extend our techniques to show the first bounds on the query complexity for any $\ell_p$ loss with $p\in(1,2)$. As a key novelty in our analysis, we introduce the notion of robust uniform convergence, which is a new approximation guarantee for the empirical loss. While it is inspired by uniform convergence in statistical learning, our approach additionally incorporates a correction term to avoid unnecessary variance due to outliers. This can be viewed as a new connection between statistical learning theory and variance reduction techniques in stochastic optimization, which should be of independent interest.

Via

Michał Dereziński, Zhenyu Liao, Edgar Dobriban, Michael W. Mahoney

For a tall $n\times d$ matrix $A$ and a random $m\times n$ sketching matrix $S$, the sketched estimate of the inverse covariance matrix $(A^\top A)^{-1}$ is typically biased: $E[(\tilde A^\top\tilde A)^{-1}]\ne(A^\top A)^{-1}$, where $\tilde A=SA$. This phenomenon, which we call inversion bias, arises, e.g., in statistics and distributed optimization, when averaging multiple independently constructed estimates of quantities that depend on the inverse covariance. We develop a framework for analyzing inversion bias, based on our proposed concept of an $(\epsilon,\delta)$-unbiased estimator for random matrices. We show that when the sketching matrix $S$ is dense and has i.i.d. sub-gaussian entries, then after simple rescaling, the estimator $(\frac m{m-d}\tilde A^\top\tilde A)^{-1}$ is $(\epsilon,\delta)$-unbiased for $(A^\top A)^{-1}$ with a sketch of size $m=O(d+\sqrt d/\epsilon)$. This implies that for $m=O(d)$, the inversion bias of this estimator is $O(1/\sqrt d)$, which is much smaller than the $\Theta(1)$ approximation error obtained as a consequence of the subspace embedding guarantee for sub-gaussian sketches. We then propose a new sketching technique, called LEverage Score Sparsified (LESS) embeddings, which uses ideas from both data-oblivious sparse embeddings as well as data-aware leverage-based row sampling methods, to get $\epsilon$ inversion bias for sketch size $m=O(d\log d+\sqrt d/\epsilon)$ in time $O(\text{nnz}(A)\log n+md^2)$, where nnz is the number of non-zeros. The key techniques enabling our analysis include an extension of a classical inequality of Bai and Silverstein for random quadratic forms, which we call the Restricted Bai-Silverstein inequality; and anti-concentration of the Binomial distribution via the Paley-Zygmund inequality, which we use to prove a lower bound showing that leverage score sampling sketches generally do not achieve small inversion bias.

Via

Michał Dereziński, Burak Bartan, Mert Pilanci, Michael W. Mahoney

In distributed second order optimization, a standard strategy is to average many local estimates, each of which is based on a small sketch or batch of the data. However, the local estimates on each machine are typically biased, relative to the full solution on all of the data, and this can limit the effectiveness of averaging. Here, we introduce a new technique for debiasing the local estimates, which leads to both theoretical and empirical improvements in the convergence rate of distributed second order methods. Our technique has two novel components: (1) modifying standard sketching techniques to obtain what we call a surrogate sketch; and (2) carefully scaling the global regularization parameter for local computations. Our surrogate sketches are based on determinantal point processes, a family of distributions for which the bias of an estimate of the inverse Hessian can be computed exactly. Based on this computation, we show that when the objective being minimized is $l_2$-regularized with parameter $\lambda$ and individual machines are each given a sketch of size $m$, then to eliminate the bias, local estimates should be computed using a shrunk regularization parameter given by $\lambda^{\prime}=\lambda\cdot(1-\frac{d_{\lambda}}{m})$, where $d_{\lambda}$ is the $\lambda$-effective dimension of the Hessian (or, for quadratic problems, the data matrix).

Via