Abstract:Radar-based perception has gained increasing attention in autonomous driving, yet the inherent sparsity of radars poses challenges. Radar raw data often contains excessive noise, whereas radar point clouds retain only limited information. In this work, we holistically treat the sparse nature of radar data by introducing an adaptive subsampling method together with a tailored network architecture that exploits the sparsity patterns to discover global and local dependencies in the radar signal. Our subsampling module selects a subset of pixels from range-doppler (RD) spectra that contribute most to the downstream perception tasks. To improve the feature extraction on sparse subsampled data, we propose a new way of applying graph neural networks on radar data and design a novel two-branch backbone to capture both global and local neighbor information. An attentive fusion module is applied to combine features from both branches. Experiments on the RADIal dataset show that our SparseRadNet exceeds state-of-the-art (SOTA) performance in object detection and achieves close to SOTA accuracy in freespace segmentation, meanwhile using sparse subsampled input data.
Abstract:Autonomous vehicles require a precise understanding of their environment to navigate safely. Reliable identification of unknown objects, especially those that are absent during training, such as wild animals, is critical due to their potential to cause serious accidents. Significant progress in semantic segmentation of anomalies has been driven by the availability of out-of-distribution (OOD) benchmarks. However, a comprehensive understanding of scene dynamics requires the segmentation of individual objects, and thus the segmentation of instances is essential. Development in this area has been lagging, largely due to the lack of dedicated benchmarks. To address this gap, we have extended the most commonly used anomaly segmentation benchmarks to include the instance segmentation task. Our evaluation of anomaly instance segmentation methods shows that this challenge remains an unsolved problem. The benchmark website and the competition page can be found at: https://vision.rwth-aachen.de/oodis .
Abstract:Convolutional neural networks (CNNs) for image processing tend to focus on localized texture patterns, commonly referred to as texture bias. While most of the previous works in the literature focus on the task of image classification, we go beyond this and study the texture bias of CNNs in semantic segmentation. In this work, we propose to train CNNs on pre-processed images with less texture to reduce the texture bias. Therein, the challenge is to suppress image texture while preserving shape information. To this end, we utilize edge enhancing diffusion (EED), an anisotropic image diffusion method initially introduced for image compression, to create texture reduced duplicates of existing datasets. Extensive numerical studies are performed with both CNNs and vision transformer models trained on original data and EED-processed data from the Cityscapes dataset and the CARLA driving simulator. We observe strong texture-dependence of CNNs and moderate texture-dependence of transformers. Training CNNs on EED-processed images enables the models to become completely ignorant with respect to texture, demonstrating resilience with respect to texture re-introduction to any degree. Additionally we analyze the performance reduction in depth on a level of connected components in the semantic segmentation and study the influence of EED pre-processing on domain generalization as well as adversarial robustness.
Abstract:Deep learning-based numerical schemes for solving high-dimensional backward stochastic differential equations (BSDEs) have recently raised plenty of scientific interest. While they enable numerical methods to approximate very high-dimensional BSDEs, their reliability has not been studied and is thus not understood. In this work, we study uncertainty quantification (UQ) for a class of deep learning-based BSDE schemes. More precisely, we review the sources of uncertainty involved in the schemes and numerically study the impact of different sources. Usually, the standard deviation (STD) of the approximate solutions obtained from multiple runs of the algorithm with different datasets is calculated to address the uncertainty. This approach is computationally quite expensive, especially for high-dimensional problems. Hence, we develop a UQ model that efficiently estimates the STD of the approximate solution using only a single run of the algorithm. The model also estimates the mean of the approximate solution, which can be leveraged to initialize the algorithm and improve the optimization process. Our numerical experiments show that the UQ model produces reliable estimates of the mean and STD of the approximate solution for the considered class of deep learning-based BSDE schemes. The estimated STD captures multiple sources of uncertainty, demonstrating its effectiveness in quantifying the uncertainty. Additionally, the model illustrates the improved performance when comparing different schemes based on the estimated STD values. Furthermore, it can identify hyperparameter values for which the scheme achieves good approximations.
Abstract:Obtaining annotations for complex computer vision tasks such as object detection is an expensive and time-intense endeavor involving a large number of human workers or expert opinions. Reducing the amount of annotations required while maintaining algorithm performance is, therefore, desirable for machine learning practitioners and has been successfully achieved by active learning algorithms. However, it is not merely the amount of annotations which influences model performance but also the annotation quality. In practice, the oracles that are queried for new annotations frequently contain significant amounts of noise. Therefore, cleansing procedures are oftentimes necessary to review and correct given labels. This process is subject to the same budget as the initial annotation itself since it requires human workers or even domain experts. Here, we propose a composite active learning framework including a label review module for deep object detection. We show that utilizing part of the annotation budget to correct the noisy annotations partially in the active dataset leads to early improvements in model performance, especially when coupled with uncertainty-based query strategies. The precision of the label error proposals has a significant influence on the measured effect of the label review. In our experiments we achieve improvements of up to 4.5 mAP points of object detection performance by incorporating label reviews at equal annotation budget.
Abstract:In this work, we develop a neural architecture search algorithm, termed Resbuilder, that develops ResNet architectures from scratch that achieve high accuracy at moderate computational cost. It can also be used to modify existing architectures and has the capability to remove and insert ResNet blocks, in this way searching for suitable architectures in the space of ResNet architectures. In our experiments on different image classification datasets, Resbuilder achieves close to state-of-the-art performance while saving computational cost compared to off-the-shelf ResNets. Noteworthy, we once tune the parameters on CIFAR10 which yields a suitable default choice for all other datasets. We demonstrate that this property generalizes even to industrial applications by applying our method with default parameters on a proprietary fraud detection dataset.
Abstract:Object detection on Lidar point cloud data is a promising technology for autonomous driving and robotics which has seen a significant rise in performance and accuracy during recent years. Particularly uncertainty estimation is a crucial component for down-stream tasks and deep neural networks remain error-prone even for predictions with high confidence. Previously proposed methods for quantifying prediction uncertainty tend to alter the training scheme of the detector or rely on prediction sampling which results in vastly increased inference time. In order to address these two issues, we propose LidarMetaDetect (LMD), a light-weight post-processing scheme for prediction quality estimation. Our method can easily be added to any pre-trained Lidar object detector without altering anything about the base model and is purely based on post-processing, therefore, only leading to a negligible computational overhead. Our experiments show a significant increase of statistical reliability in separating true from false predictions. We propose and evaluate an additional application of our method leading to the detection of annotation errors. Explicit samples and a conservative count of annotation error proposals indicates the viability of our method for large-scale datasets like KITTI and nuScenes. On the widely-used nuScenes test dataset, 43 out of the top 100 proposals of our method indicate, in fact, erroneous annotations.
Abstract:Labeling datasets for supervised object detection is a dull and time-consuming task. Errors can be easily introduced during annotation and overlooked during review, yielding inaccurate benchmarks and performance degradation of deep neural networks trained on noisy labels. In this work, we for the first time introduce a benchmark for label error detection methods on object detection datasets as well as a label error detection method and a number of baselines. We simulate four different types of randomly introduced label errors on train and test sets of well-labeled object detection datasets. For our label error detection method we assume a two-stage object detector to be given and consider the sum of both stages' classification and regression losses. The losses are computed with respect to the predictions and the noisy labels including simulated label errors, aiming at detecting the latter. We compare our method to three baselines: a naive one without deep learning, the object detector's score and the entropy of the classification softmax distribution. We outperform all baselines and demonstrate that among the considered methods, ours is the only one that detects label errors of all four types efficiently. Furthermore, we detect real label errors a) on commonly used test datasets in object detection and b) on a proprietary dataset. In both cases we achieve low false positives rates, i.e., when considering 200 proposals from our method, we detect label errors with a precision for a) of up to 71.5% and for b) with 97%.
Abstract:Vision transformers have emerged as powerful tools for many computer vision tasks. It has been shown that their features and class tokens can be used for salient object segmentation. However, the properties of segmentation transformers remain largely unstudied. In this work we conduct an in-depth study of the spatial attentions of different backbone layers of semantic segmentation transformers and uncover interesting properties. The spatial attentions of a patch intersecting with an object tend to concentrate within the object, whereas the attentions of larger, more uniform image areas rather follow a diffusive behavior. In other words, vision transformers trained to segment a fixed set of object classes generalize to objects well beyond this set. We exploit this by extracting heatmaps that can be used to segment unknown objects within diverse backgrounds, such as obstacles in traffic scenes. Our method is training-free and its computational overhead negligible. We use off-the-shelf transformers trained for street-scene segmentation to process other scene types.
Abstract:Active learning as a paradigm in deep learning is especially important in applications involving intricate perception tasks such as object detection where labels are difficult and expensive to acquire. Development of active learning methods in such fields is highly computationally expensive and time consuming which obstructs the progression of research and leads to a lack of comparability between methods. In this work, we propose and investigate a sandbox setup for rapid development and transparent evaluation of active learning in deep object detection. Our experiments with commonly used configurations of datasets and detection architectures found in the literature show that results obtained in our sandbox environment are representative of results on standard configurations. The total compute time to obtain results and assess the learning behavior can thereby be reduced by factors of up to 14 when comparing with Pascal VOC and up to 32 when comparing with BDD100k. This allows for testing and evaluating data acquisition and labeling strategies in under half a day and contributes to the transparency and development speed in the field of active learning for object detection.