Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Yu-Guan Hsieh, James Thornton, Eugene Ndiaye, Michal Klein, Marco Cuturi, Pierre Ablin

Beyond minimizing a single training loss, many deep learning estimation pipelines rely on an auxiliary objective to quantify and encourage desirable properties of the model (e.g. performance on another dataset, robustness, agreement with a prior). Although the simplest approach to incorporating an auxiliary loss is to sum it with the training loss as a regularizer, recent works have shown that one can improve performance by blending the gradients beyond a simple sum; this is known as gradient surgery. We cast the problem as a constrained minimization problem where the auxiliary objective is minimized among the set of minimizers of the training loss. To solve this bilevel problem, we follow a parameter update direction that combines the training loss gradient and the orthogonal projection of the auxiliary gradient to the training gradient. In a setting where gradients come from mini-batches, we explain how, using a moving average of the training loss gradients, we can carefully maintain this critical orthogonality property. We demonstrate that our method, Bloop, can lead to much better performances on NLP and vision experiments than other gradient surgery methods without EMA.

Via

Othmane Sebbouh, Marco Cuturi, Gabriel Peyré

Matching a source to a target probability measure is often solved by instantiating a linear optimal transport (OT) problem, parameterized by a ground cost function that quantifies discrepancy between points. When these measures live in the same metric space, the ground cost often defaults to its distance. When instantiated across two different spaces, however, choosing that cost in the absence of aligned data is a conundrum. As a result, practitioners often resort to solving instead a quadratic Gromow-Wasserstein (GW) problem. We exploit in this work a parallel between GW and cost-regularized OT, the regularized minimization of a linear OT objective parameterized by a ground cost. We use this cost-regularized formulation to match measures across two different Euclidean spaces, where the cost is evaluated between transformed source points and target points. We show that several quadratic OT problems fall in this category, and consider enforcing structure in linear transform (e.g. sparsity), by introducing structure-inducing regularizers. We provide a proximal algorithm to extract such transforms from unaligned data, and demonstrate its applicability to single-cell spatial transcriptomics/multiomics matching tasks.

Via

Tianyi Lin, Marco Cuturi, Michael I. Jordan

Kernel-based optimal transport (OT) estimators offer an alternative, functional estimation procedure to address OT problems from samples. Recent works suggest that these estimators are more statistically efficient than plug-in (linear programming-based) OT estimators when comparing probability measures in high-dimensions~\citep{Vacher-2021-Dimension}. Unfortunately, that statistical benefit comes at a very steep computational price: because their computation relies on the short-step interior-point method (SSIPM), which comes with a large iteration count in practice, these estimators quickly become intractable w.r.t. sample size $n$. To scale these estimators to larger $n$, we propose a nonsmooth fixed-point model for the kernel-based OT problem, and show that it can be efficiently solved via a specialized semismooth Newton (SSN) method: We show, exploring the problem's structure, that the per-iteration cost of performing one SSN step can be significantly reduced in practice. We prove that our SSN method achieves a global convergence rate of $O(1/\sqrt{k})$, and a local quadratic convergence rate under standard regularity conditions. We show substantial speedups over SSIPM on both synthetic and real datasets.

Via

Dominik Klein, Théo Uscidda, Fabian Theis, Marco Cuturi

Learning measure-to-measure mappings is a crucial task in machine learning, featured prominently in generative modeling. Recent years have witnessed a surge of techniques that draw inspiration from optimal transport (OT) theory. Combined with neural network models, these methods collectively known as \textit{Neural OT} use optimal transport as an inductive bias: such mappings should be optimal w.r.t. a given cost function, in the sense that they are able to move points in a thrifty way, within (by minimizing displacements) or across spaces (by being isometric). This principle, while intuitive, is often confronted with several practical challenges that require adapting the OT toolbox: cost functions other than the squared-Euclidean cost can be challenging to handle, the deterministic formulation of Monge maps leaves little flexibility, mapping across incomparable spaces raises multiple challenges, while the mass conservation constraint inherent to OT can provide too much credit to outliers. While each of these mismatches between practice and theory has been addressed independently in various works, we propose in this work an elegant framework to unify them, called \textit{generative entropic neural optimal transport} (GENOT). GENOT can accommodate any cost function; handles randomness using conditional generative models; can map points across incomparable spaces, and can be used as an \textit{unbalanced} solver. We evaluate our approach through experiments conducted on various synthetic datasets and demonstrate its practicality in single-cell biology. In this domain, GENOT proves to be valuable for tasks such as modeling cell development, predicting cellular responses to drugs, and translating between different data modalities of cells.

Via

Antoine Wehenkel, Jens Behrmann, Andrew C. Miller, Guillermo Sapiro, Ozan Sener, Marco Cuturi, Jörn-Henrik Jacobsen

Over the past decades, hemodynamics simulators have steadily evolved and have become tools of choice for studying cardiovascular systems in-silico. While such tools are routinely used to simulate whole-body hemodynamics from physiological parameters, solving the corresponding inverse problem of mapping waveforms back to plausible physiological parameters remains both promising and challenging. Motivated by advances in simulation-based inference (SBI), we cast this inverse problem as statistical inference. In contrast to alternative approaches, SBI provides \textit{posterior distributions} for the parameters of interest, providing a \textit{multi-dimensional} representation of uncertainty for \textit{individual} measurements. We showcase this ability by performing an in-silico uncertainty analysis of five biomarkers of clinical interest comparing several measurement modalities. Beyond the corroboration of known facts, such as the feasibility of estimating heart rate, our study highlights the potential of estimating new biomarkers from standard-of-care measurements. SBI reveals practically relevant findings that cannot be captured by standard sensitivity analyses, such as the existence of sub-populations for which parameter estimation exhibits distinct uncertainty regimes. Finally, we study the gap between in-vivo and in-silico with the MIMIC-III waveform database and critically discuss how cardiovascular simulations can inform real-world data analysis.

Via

Michal Klein, Aram-Alexandre Pooladian, Pierre Ablin, Eugène Ndiaye, Jonathan Niles-Weed, Marco Cuturi

Optimal transport theory has provided machine learning with several tools to infer a push-forward map between densities from samples. While this theory has recently seen tremendous methodological developments in machine learning, its practical implementation remains notoriously difficult, because it is plagued by both computational and statistical challenges. Because of such difficulties, existing approaches rarely depart from the default choice of estimating such maps with the simple squared-Euclidean distance as the ground cost, $c(x,y)=\|x-y\|^2_2$. We follow a different path in this work, with the motivation of \emph{learning} a suitable cost structure to encourage maps to transport points along engineered features. We extend the recently proposed Monge-Bregman-Occam pipeline~\citep{cuturi2023monge}, that rests on an alternative cost formulation that is also cost-invariant $c(x,y)=h(x-y)$, but which adopts a more general form as $h=\tfrac12 \ell_2^2+\tau$, where $\tau$ is an appropriately chosen regularizer. We first propose a method that builds upon proximal gradient descent to generate ground truth transports for such structured costs, using the notion of $h$-transforms and $h$-concave potentials. We show more generally that such a method can be extended to compute $h$-transforms for entropic potentials. We study a regularizer that promotes transport displacements in low-dimensional spaces, and propose to learn such a basis change using Riemannian gradient descent on the Stiefel manifold. We show that these changes lead to estimators that are more robust and easier to interpret.

Via

Meyer Scetbon, Michal Klein, Giovanni Palla, Marco Cuturi

The relevance of optimal transport methods to machine learning has long been hindered by two salient limitations. First, the $O(n^3)$ computational cost of standard sample-based solvers (when used on batches of $n$ samples) is prohibitive. Second, the mass conservation constraint makes OT solvers too rigid in practice: because they must match \textit{all} points from both measures, their output can be heavily influenced by outliers. A flurry of recent works in OT has addressed these computational and modelling limitations, but has resulted in two separate strains of methods: While the computational outlook was much improved by entropic regularization, more recent $O(n)$ linear-time \textit{low-rank} solvers hold the promise to scale up OT further. On the other hand, modelling rigidities have been eased owing to unbalanced variants of OT, that rely on penalization terms to promote, rather than impose, mass conservation. The goal of this paper is to merge these two strains, to achieve the promise of \textit{both} versatile/scalable unbalanced/low-rank OT solvers. We propose custom algorithms to implement these extensions for the linear OT problem and its Fused-Gromov-Wasserstein generalization, and demonstrate their practical relevance to challenging spatial transcriptomics matching problems.

Via

Théo Uscidda, Marco Cuturi

Optimal transport (OT) theory has been been used in machine learning to study and characterize maps that can push-forward efficiently a probability measure onto another. Recent works have drawn inspiration from Brenier's theorem, which states that when the ground cost is the squared-Euclidean distance, the ``best'' map to morph a continuous measure in $\mathcal{P}(\Rd)$ into another must be the gradient of a convex function. To exploit that result, [Makkuva+ 2020, Korotin+2020] consider maps $T=\nabla f_\theta$, where $f_\theta$ is an input convex neural network (ICNN), as defined by Amos+2017, and fit $\theta$ with SGD using samples. Despite their mathematical elegance, fitting OT maps with ICNNs raises many challenges, due notably to the many constraints imposed on $\theta$; the need to approximate the conjugate of $f_\theta$; or the limitation that they only work for the squared-Euclidean cost. More generally, we question the relevance of using Brenier's result, which only applies to densities, to constrain the architecture of candidate maps fitted on samples. Motivated by these limitations, we propose a radically different approach to estimating OT maps: Given a cost $c$ and a reference measure $\rho$, we introduce a regularizer, the Monge gap $\mathcal{M}^c_{\rho}(T)$ of a map $T$. That gap quantifies how far a map $T$ deviates from the ideal properties we expect from a $c$-OT map. In practice, we drop all architecture requirements for $T$ and simply minimize a distance (e.g., the Sinkhorn divergence) between $T\sharp\mu$ and $\nu$, regularized by $\mathcal{M}^c_\rho(T)$. We study $\mathcal{M}^c_{\rho}$, and show how our simple pipeline outperforms significantly other baselines in practice.

Via

Marco Cuturi, Michal Klein, Pierre Ablin

Optimal transport (OT) theory focuses, among all maps $T:\mathbb{R}^d\rightarrow \mathbb{R}^d$ that can morph a probability measure onto another, on those that are the ``thriftiest'', i.e. such that the averaged cost $c(x, T(x))$ between $x$ and its image $T(x)$ be as small as possible. Many computational approaches have been proposed to estimate such Monge maps when $c$ is the $\ell_2^2$ distance, e.g., using entropic maps [Pooladian'22], or neural networks [Makkuva'20, Korotin'20]. We propose a new model for transport maps, built on a family of translation invariant costs $c(x, y):=h(x-y)$, where $h:=\tfrac{1}{2}\|\cdot\|_2^2+\tau$ and $\tau$ is a regularizer. We propose a generalization of the entropic map suitable for $h$, and highlight a surprising link tying it with the Bregman centroids of the divergence $D_h$ generated by $h$, and the proximal operator of $\tau$. We show that choosing a sparsity-inducing norm for $\tau$ results in maps that apply Occam's razor to transport, in the sense that the displacement vectors $\Delta(x):= T(x)-x$ they induce are sparse, with a sparsity pattern that varies depending on $x$. We showcase the ability of our method to estimate meaningful OT maps for high-dimensional single-cell transcription data, in the $34000$-$d$ space of gene counts for cells, without using dimensionality reduction, thus retaining the ability to interpret all displacements at the gene level.

Via