Abstract:Vector quantization, a problem rooted in Shannon's source coding theory, aims to quantize high-dimensional Euclidean vectors while minimizing distortion in their geometric structure. We propose TurboQuant to address both mean-squared error (MSE) and inner product distortion, overcoming limitations of existing methods that fail to achieve optimal distortion rates. Our data-oblivious algorithms, suitable for online applications, achieve near-optimal distortion rates (within a small constant factor) across all bit-widths and dimensions. TurboQuant achieves this by randomly rotating input vectors, inducing a concentrated Beta distribution on coordinates, and leveraging the near-independence property of distinct coordinates in high dimensions to simply apply optimal scalar quantizers per each coordinate. Recognizing that MSE-optimal quantizers introduce bias in inner product estimation, we propose a two-stage approach: applying an MSE quantizer followed by a 1-bit Quantized JL (QJL) transform on the residual, resulting in an unbiased inner product quantizer. We also provide a formal proof of the information-theoretic lower bounds on best achievable distortion rate by any vector quantizer, demonstrating that TurboQuant closely matches these bounds, differing only by a small constant ($\approx 2.7$) factor. Experimental results validate our theoretical findings, showing that for KV cache quantization, we achieve absolute quality neutrality with 3.5 bits per channel and marginal quality degradation with 2.5 bits per channel. Furthermore, in nearest neighbor search tasks, our method outperforms existing product quantization techniques in recall while reducing indexing time to virtually zero.
Abstract:Neural embedding models have become a fundamental component of modern information retrieval (IR) pipelines. These models produce a single embedding $x \in \mathbb{R}^d$ per data-point, allowing for fast retrieval via highly optimized maximum inner product search (MIPS) algorithms. Recently, beginning with the landmark ColBERT paper, multi-vector models, which produce a set of embedding per data point, have achieved markedly superior performance for IR tasks. Unfortunately, using these models for IR is computationally expensive due to the increased complexity of multi-vector retrieval and scoring. In this paper, we introduce MUVERA (MUlti-VEctor Retrieval Algorithm), a retrieval mechanism which reduces multi-vector similarity search to single-vector similarity search. This enables the usage of off-the-shelf MIPS solvers for multi-vector retrieval. MUVERA asymmetrically generates Fixed Dimensional Encodings (FDEs) of queries and documents, which are vectors whose inner product approximates multi-vector similarity. We prove that FDEs give high-quality $\epsilon$-approximations, thus providing the first single-vector proxy for multi-vector similarity with theoretical guarantees. Empirically, we find that FDEs achieve the same recall as prior state-of-the-art heuristics while retrieving 2-5$\times$ fewer candidates. Compared to prior state of the art implementations, MUVERA achieves consistently good end-to-end recall and latency across a diverse set of the BEIR retrieval datasets, achieving an average of 10$\%$ improved recall with $90\%$ lower latency.