Abstract:We introduce AdamS, a simple yet effective alternative to Adam for large language model (LLM) pretraining and post-training. By leveraging a novel denominator, i.e., the root of weighted sum of squares of the momentum and the current gradient, AdamS eliminates the need for second-moment estimates. Hence, AdamS is efficient, matching the memory and compute footprint of SGD with momentum while delivering superior optimization performance. Moreover, AdamS is easy to adopt: it can directly inherit hyperparameters of AdamW, and is entirely model-agnostic, integrating seamlessly into existing pipelines without modifications to optimizer APIs or architectures. The motivation behind AdamS stems from the observed $(L_0, L_1)$ smoothness properties in transformer objectives, where local smoothness is governed by gradient magnitudes that can be further approximated by momentum magnitudes. We establish rigorous theoretical convergence guarantees and provide practical guidelines for hyperparameter selection. Empirically, AdamS demonstrates strong performance in various tasks, including pre-training runs on GPT-2 and Llama2 (up to 13B parameters) and reinforcement learning in post-training regimes. With its efficiency, simplicity, and theoretical grounding, AdamS stands as a compelling alternative to existing optimizers.
Abstract:We present results from a large-scale experiment on pretraining encoders with non-embedding parameter counts ranging from 700M to 9.3B, their subsequent distillation into smaller models ranging from 17M-170M parameters, and their application to the Natural Language Understanding (NLU) component of a virtual assistant system. Though we train using 70% spoken-form data, our teacher models perform comparably to XLM-R and mT5 when evaluated on the written-form Cross-lingual Natural Language Inference (XNLI) corpus. We perform a second stage of pretraining on our teacher models using in-domain data from our system, improving error rates by 3.86% relative for intent classification and 7.01% relative for slot filling. We find that even a 170M-parameter model distilled from our Stage 2 teacher model has 2.88% better intent classification and 7.69% better slot filling error rates when compared to the 2.3B-parameter teacher trained only on public data (Stage 1), emphasizing the importance of in-domain data for pretraining. When evaluated offline using labeled NLU data, our 17M-parameter Stage 2 distilled model outperforms both XLM-R Base (85M params) and DistillBERT (42M params) by 4.23% to 6.14%, respectively. Finally, we present results from a full virtual assistant experimentation platform, where we find that models trained using our pretraining and distillation pipeline outperform models distilled from 85M-parameter teachers by 3.74%-4.91% on an automatic measurement of full-system user dissatisfaction.
Abstract:This paper presents a production Semi-Supervised Learning (SSL) pipeline based on the student-teacher framework, which leverages millions of unlabeled examples to improve Natural Language Understanding (NLU) tasks. We investigate two questions related to the use of unlabeled data in production SSL context: 1) how to select samples from a huge unlabeled data pool that are beneficial for SSL training, and 2) how do the selected data affect the performance of different state-of-the-art SSL techniques. We compare four widely used SSL techniques, Pseudo-Label (PL), Knowledge Distillation (KD), Virtual Adversarial Training (VAT) and Cross-View Training (CVT) in conjunction with two data selection methods including committee-based selection and submodular optimization based selection. We further examine the benefits and drawbacks of these techniques when applied to intent classification (IC) and named entity recognition (NER) tasks, and provide guidelines specifying when each of these methods might be beneficial to improve large scale NLU systems.