Abstract:Absolute Pose Regression (APR) has emerged as a compelling paradigm for visual localization. However, APR models typically operate as black boxes, directly regressing a 6-DoF pose from a query image, which can lead to memorizing training views rather than understanding 3D scene geometry. In this work, we propose a geometrically-grounded alternative. Inspired by novel view synthesis, which renders images from intermediate geometric representations, we reformulate APR as its inverse that regresses the underlying 3D representations directly from the image, and we name this paradigm Geometric Representation Regression (GRR). Our model explicitly predicts two disentangled geometric representations in the world coordinate system: (1) a ray bundle's directions to estimate camera rotation, and (2) a corresponding pointmap to estimate camera translation. The final 6-DoF camera pose is then recovered from these geometric components using a differentiable deterministic solver. This disentangled approach, which separates the learned visual-to-geometry mapping from the final pose calculation, introduces a strong geometric prior into the network. We find that the explicit decoupling of rotation and translation predictions measurably boosts performance. We demonstrate state-of-the-art performance on 7-Scenes and Cambridge Landmarks datasets, validating that modeling the inverse rendering process is a more robust path toward generalizable absolute pose estimation.




Abstract:Detecting events from social media data streams is gradually attracting researchers. The innate challenge for detecting events is to extract discriminative information from social media data thereby assigning the data into different events. Due to the excessive diversity and high updating frequency of social data, using supervised approaches to detect events from social messages is hardly achieved. To this end, recent works explore learning discriminative information from social messages by leveraging graph contrastive learning (GCL) and embedding clustering in an unsupervised manner. However, two intrinsic issues exist in benchmark methods: conventional GCL can only roughly explore partial attributes, thereby insufficiently learning the discriminative information of social messages; for benchmark methods, the learned embeddings are clustered in the latent space by taking advantage of certain specific prior knowledge, which conflicts with the principle of unsupervised learning paradigm. In this paper, we propose a novel unsupervised social media event detection method via hybrid graph contrastive learning and reinforced incremental clustering (HCRC), which uses hybrid graph contrastive learning to comprehensively learn semantic and structural discriminative information from social messages and reinforced incremental clustering to perform efficient clustering in a solidly unsupervised manner. We conduct comprehensive experiments to evaluate HCRC on the Twitter and Maven datasets. The experimental results demonstrate that our approach yields consistent significant performance boosts. In traditional incremental setting, semi-supervised incremental setting and solidly unsupervised setting, the model performance has achieved maximum improvements of 53%, 45%, and 37%, respectively.