Abstract:Biological protocols are fundamental to reproducible and safe life science research. While LLMs excel on general tasks, their systematic evaluation on these highly specialized, accuracy-critical, and inherently procedural texts remains limited. In this work, we present BioProBench, the first large-scale, integrated multi-task benchmark for biological protocol understanding and reasoning. While limited benchmarks have touched upon specific aspects like protocol QA, BioProBench provides a comprehensive suite of five core tasks: Protocol Question Answering, Step Ordering, Error Correction, Protocol Generation, and Protocol Reasoning, enabling a holistic evaluation of LLMs on procedural biological texts. Built upon 27K original protocols, it yields nearly 556K high-quality structured instances. We evaluate 12 mainstream open/closed-source LLMs on BioProBench. Experimental results reveal that while top models preform well on surface understanding tasks, struggle significantly with deep reasoning and structured generation tasks like ordering and generation. Furthermore, model comparisons reveal diverse performance: certain open-source models approach closed-source levels on some tasks, yet bio-specific small models lag behind general LLMs, indicating limitations on complex procedural content. Overall, our findings underscore that procedural reasoning within biological protocols represents a significant challenge for current LLMs. BioProBench serves as a standardized framework to diagnose these specific limitations and guide the development of AI systems better equipped for safely automating complex scientific procedures. The code and data are available at: https://github.com/YuyangSunshine/bioprotocolbench and https://huggingface.co/datasets/GreatCaptainNemo/BioProBench.
Abstract:Spiking Neural Networks (SNNs) have emerged as a promising third generation of neural networks, offering unique characteristics such as binary outputs, high sparsity, and biological plausibility. However, the lack of effective learning algorithms remains a challenge for SNNs. For instance, while converting artificial neural networks (ANNs) to SNNs circumvents the need for direct training of SNNs, it encounters issues related to conversion errors and high inference time delays. In order to reduce or even eliminate conversion errors while decreasing inference time-steps, we have introduced a novel type of neuron called Group Neurons (GNs). One GN is composed of multiple Integrate-and-Fire (IF) neurons as members, and its neural dynamics are meticulously designed. Based on GNs, we have optimized the traditional ANN-SNN conversion framework. Specifically, we replace the IF neurons in the SNNs obtained by the traditional conversion framework with GNs. The resulting SNNs, which utilize GNs, are capable of achieving accuracy levels comparable to ANNs even within extremely short inference time-steps. The experiments on CIFAR10, CIFAR100, and ImageNet datasets demonstrate the superiority of the proposed methods in terms of both inference accuracy and latency. Code is available at https://github.com/Lyu6PosHao/ANN2SNN_GN.
Abstract:We present a novel approach for integrating Myers-Briggs Type Indicator (MBTI) personality traits into large language models (LLMs), addressing the challenges of personality consistency in personalized AI. Our method, "Machine Mindset," involves a two-phase fine-tuning and Direct Preference Optimization (DPO) to embed MBTI traits into LLMs. This approach ensures that models internalize these traits, offering a stable and consistent personality profile. We demonstrate the effectiveness of our models across various domains, showing alignment between model performance and their respective MBTI traits. The paper highlights significant contributions in the development of personality datasets and a new training methodology for personality integration in LLMs, enhancing the potential for personalized AI applications. We also open-sourced our model and part of the data at \url{https://github.com/PKU-YuanGroup/Machine-Mindset}.