Abstract:Although numerous strategies have recently been proposed to enhance the autonomous interaction capabilities of multimodal agents in graphical user interface (GUI), their reliability remains limited when faced with complex or out-of-domain tasks. This raises a fundamental question: Are existing multimodal agents reasoning spuriously? In this paper, we propose \textbf{Agent-ScanKit}, a systematic probing framework to unravel the memory and reasoning capabilities of multimodal agents under controlled perturbations. Specifically, we introduce three orthogonal probing paradigms: visual-guided, text-guided, and structure-guided, each designed to quantify the contributions of memorization and reasoning without requiring access to model internals. In five publicly available GUI benchmarks involving 18 multimodal agents, the results demonstrate that mechanical memorization often outweighs systematic reasoning. Most of the models function predominantly as retrievers of training-aligned knowledge, exhibiting limited generalization. Our findings underscore the necessity of robust reasoning modeling for multimodal agents in real-world scenarios, offering valuable insights toward the development of reliable multimodal agents.
Abstract:Mobile-use agents powered by vision-language models (VLMs) have shown great potential in interpreting natural language instructions and generating corresponding actions based on mobile graphical user interface. Recent studies suggest that incorporating chain-of-thought (CoT) reasoning tends to improve the execution accuracy. However, existing evaluations emphasize execution accuracy while neglecting whether CoT reasoning aligns with ground-truth actions. This oversight fails to assess potential reasoning-execution gaps, which in turn foster over-trust: users relying on seemingly plausible CoTs may unknowingly authorize harmful actions, potentially resulting in financial loss or trust crisis. In this work, we introduce a new evaluation framework to diagnose reasoning-execution gaps. At its core lies Ground-Truth Alignment (GTA), which measures whether the action implied by a CoT matches the ground-truth action. By combining GTA with the standard Exact Match (EM) metric, we jointly assess both the reasoning accuracy and execution accuracy. This joint perspective reveals two types of reasoning-execution gaps: (i) Execution Gap (EG), where the reasoning correctly identifies the correct action but execution fails, and (ii) Reasoning Gap (RG), where execution succeeds but reasoning process conflicts with the actual execution. Experimental results across a wide range of mobile interaction tasks reveal that reasoning-execution gaps are prevalent, with execution gaps occurring more frequently than reasoning gaps. Moreover, while scaling up model size reduces the overall gap, sizable execution gaps persist even in the largest models. Further analysis shows that our framework reliably reflects systematic EG/RG patterns in state-of-the-art models. These findings offer concrete diagnostics and support the development of more trustworthy mobile-use agents.
Abstract:Graphical user interface (GUI) agents have recently emerged as an intriguing paradigm for human-computer interaction, capable of automatically executing user instructions to operate intelligent terminal devices. However, when encountering out-of-distribution (OOD) instructions that violate environmental constraints or exceed the current capabilities of agents, GUI agents may suffer task breakdowns or even pose security threats. Therefore, effective OOD detection for GUI agents is essential. Traditional OOD detection methods perform suboptimally in this domain due to the complex embedding space and evolving GUI environments. In this work, we observe that the in-distribution input semantic space of GUI agents exhibits a clustering pattern with respect to the distance from the centroid. Based on the finding, we propose GEM, a novel method based on fitting a Gaussian mixture model over input embedding distances extracted from the GUI Agent that reflect its capability boundary. Evaluated on eight datasets spanning smartphones, computers, and web browsers, our method achieves an average accuracy improvement of 23.70\% over the best-performing baseline. Analysis verifies the generalization ability of our method through experiments on nine different backbones. The codes are available at https://github.com/Wuzheng02/GEM-OODforGUIagents.




Abstract:Large language models (LLMs) have exhibited great potential in autonomously completing tasks across real-world applications. Despite this, these LLM agents introduce unexpected safety risks when operating in interactive environments. Instead of centering on LLM-generated content safety in most prior studies, this work addresses the imperative need for benchmarking the behavioral safety of LLM agents within diverse environments. We introduce R-Judge, a benchmark crafted to evaluate the proficiency of LLMs in judging safety risks given agent interaction records. R-Judge comprises 162 agent interaction records, encompassing 27 key risk scenarios among 7 application categories and 10 risk types. It incorporates human consensus on safety with annotated safety risk labels and high-quality risk descriptions. Utilizing R-Judge, we conduct a comprehensive evaluation of 8 prominent LLMs commonly employed as the backbone for agents. The best-performing model, GPT-4, achieves 72.29% in contrast to the human score of 89.38%, showing considerable room for enhancing the risk awareness of LLMs. Notably, leveraging risk descriptions as environment feedback significantly improves model performance, revealing the importance of salient safety risk feedback. Furthermore, we design an effective chain of safety analysis technique to help the judgment of safety risks and conduct an in-depth case study to facilitate future research. R-Judge is publicly available at https://github.com/Lordog/R-Judge.