Abstract:Monitoring issue tracker submissions is a crucial software maintenance activity. A key goal is the prioritization of high risk, security-related bugs. If such bugs can be recognized early, the risk of propagation to dependent products and endangerment of stakeholder benefits can be mitigated. To assist triage engineers with this task, several automatic detection techniques, from Machine Learning (ML) models to prompting Large Language Models (LLMs), have been proposed. Although promising to some extent, prior techniques often memorize lexical cues as decision shortcuts, yielding low detection rate specifically for more complex submissions. As such, these classifiers do not yet reach the practical expectations of a real-time detector of security-related issues. To address these limitations, we propose SEBERTIS, a framework to train Deep Neural Networks (DNNs) as classifiers independent of lexical cues, so that they can confidently detect fully unseen security-related issues. SEBERTIS capitalizes on fine-tuning bidirectional transformer architectures as Masked Language Models (MLMs) on a series of semantically equivalent vocabulary to prediction labels (which we call Semantic Surrogates) when they have been replaced with a mask. Our SEBERTIS-trained classifier achieves a 0.9880 F1-score in detecting security-related issues of a curated corpus of 10,000 GitHub issue reports, substantially outperforming state-of-the-art issue classifiers, with 14.44%-96.98%, 15.40%-93.07%, and 14.90%-94.72% higher detection precision, recall, and F1-score over ML-based baselines. Our classifier also substantially surpasses LLM baselines, with an improvement of 23.20%-63.71%, 36.68%-85.63%, and 39.49%-74.53% for precision, recall, and F1-score.
Abstract:Few-shot 3D point cloud semantic segmentation (FS-3DSeg) aims to segment novel classes with only a few labeled samples. However, existing metric-based prototype learning methods generate prototypes solely from the support set, without considering their relevance to query data. This often results in prototype bias, where prototypes overfit support-specific characteristics and fail to generalize to the query distribution, especially in the presence of distribution shifts, which leads to degraded segmentation performance. To address this issue, we propose a novel Query-aware Hub Prototype (QHP) learning method that explicitly models semantic correlations between support and query sets. Specifically, we propose a Hub Prototype Generation (HPG) module that constructs a bipartite graph connecting query and support points, identifies frequently linked support hubs, and generates query-relevant prototypes that better capture cross-set semantics. To further mitigate the influence of bad hubs and ambiguous prototypes near class boundaries, we introduce a Prototype Distribution Optimization (PDO) module, which employs a purity-reweighted contrastive loss to refine prototype representations by pulling bad hubs and outlier prototypes closer to their corresponding class centers. Extensive experiments on S3DIS and ScanNet demonstrate that QHP achieves substantial performance gains over state-of-the-art methods, effectively narrowing the semantic gap between prototypes and query sets in FS-3DSeg.
Abstract:The rise of Generative AI (GenAI) tools like ChatGPT has created new opportunities and challenges for computing education. Existing research has primarily focused on GenAI's ability to complete educational tasks and its impact on student performance, often overlooking its effects on knowledge gains. In this study, we investigate how GenAI assistance compares to conventional online resources in supporting knowledge gains across different proficiency levels. We conducted a controlled user experiment with 24 undergraduate students of two different levels of programming experience (beginner, intermediate) to examine how students interact with ChatGPT while solving programming tasks. We analyzed task performance, conceptual understanding, and interaction behaviors. Our findings reveal that generating complete solutions with GenAI significantly improves task performance, especially for beginners, but does not consistently result in knowledge gains. Importantly, usage strategies differ by experience: beginners tend to rely heavily on GenAI toward task completion often without knowledge gain in the process, while intermediates adopt more selective approaches. We find that both over-reliance and minimal use result in weaker knowledge gains overall. Based on our results, we call on students and educators to adopt GenAI as a learning rather than a problem solving tool. Our study highlights the urgent need for guidance when integrating GenAI into programming education to foster deeper understanding.