Abstract:The interest in analog computation has grown tremendously in recent years due to its fast computation speed and excellent energy efficiency, which is very important for edge and IoT devices in the sub-watt power envelope for deep learning inferencing. However, significant performance degradation suffered by deep learning models due to the inherent noise present in the analog computation can limit their use in mission-critical applications. Hence, there is a need to understand the impact of critical model hyperparameters choice on the resulting model noise-resistant property. This need is critical as the insight obtained can be used to design deep learning models that are robust to analog noise. In this paper, the impact of the learning rate, a critical design choice, on the noise-resistant property is investigated. The study is achieved by first training deep learning models using different learning rates. Thereafter, the models are injected with analog noise and the noise-resistant property of the resulting models is examined by measuring the performance degradation due to the analog noise. The results showed there exists a sweet spot of learning rate values that achieves a good balance between model prediction performance and model noise-resistant property. Furthermore, the theoretical justification of the observed phenomenon is provided.
Abstract:Analog hardware has become a popular choice for machine learning on resource-constrained devices recently due to its fast execution and energy efficiency. However, the inherent presence of noise in analog hardware and the negative impact of the noise on deployed deep neural network (DNN) models limit their usage. The degradation in performance due to the noise calls for the novel design of DNN models that have excellent noiseresistant property, leveraging the properties of the fundamental building block of DNN models. In this work, the use of L1 or TopK BatchNorm type, a fundamental DNN model building block, in designing DNN models with excellent noise-resistant property is proposed. Specifically, a systematic study has been carried out by training DNN models with L1/TopK BatchNorm type, and the performance is compared with DNN models with L2 BatchNorm types. The resulting model noise-resistant property is tested by injecting additive noise to the model weights and evaluating the new model inference accuracy due to the noise. The results show that L1 and TopK BatchNorm type has excellent noise-resistant property, and there is no sacrifice in performance due to the change in the BatchNorm type from L2 to L1/TopK BatchNorm type.
Abstract:With the recent increase in the number of underwater activities, having effective underwater communication systems has become increasingly important. Underwater acoustic communication has been widely used but greatly impaired due to the complicated nature of the underwater environment. In a bid to better understand the underwater acoustic channel so as to help in the design and improvement of underwater communication systems, attempts have been made to model the underwater acoustic channel using mathematical equations and approximations under some assumptions. In this paper, we explore the capability of machine learning and deep learning methods to learn and accurately model the underwater acoustic channel using real underwater data collected from a water tank with disturbance and from lake Tahoe. Specifically, Deep Neural Network (DNN) and Long Short Term Memory (LSTM) are applied to model the underwater acoustic channel. Experimental results show that these models are able to model the underwater acoustic communication channel well and that deep learning models, especially LSTM are better models in terms of mean absolute percentage error.
Abstract:Social media has become an effective platform to generate and spread fake news that can mislead people and even distort public opinion. Centralized methods for fake news detection, however, cannot effectively protect user privacy during the process of centralized data collection for training models. Moreover, it cannot fully involve user feedback in the loop of learning detection models for further enhancing fake news detection. To overcome these challenges, this paper proposed a novel decentralized method, Human-in-the-loop Based Swarm Learning (HBSL), to integrate user feedback into the loop of learning and inference for recognizing fake news without violating user privacy in a decentralized manner. It consists of distributed nodes that are able to independently learn and detect fake news on local data. Furthermore, detection models trained on these nodes can be enhanced through decentralized model merging. Experimental results demonstrate that the proposed method outperforms the state-of-the-art decentralized method in regard of detecting fake news on a benchmark dataset.
Abstract:In this paper, we propose a transfer learning (TL)-enabled edge-CNN framework for 5G industrial edge networks with privacy-preserving characteristic. In particular, the edge server can use the existing image dataset to train the CNN in advance, which is further fine-tuned based on the limited datasets uploaded from the devices. With the aid of TL, the devices that are not participating in the training only need to fine-tune the trained edge-CNN model without training from scratch. Due to the energy budget of the devices and the limited communication bandwidth, a joint energy and latency problem is formulated, which is solved by decomposing the original problem into an uploading decision subproblem and a wireless bandwidth allocation subproblem. Experiments using ImageNet demonstrate that the proposed TL-enabled edge-CNN framework can achieve almost 85% prediction accuracy of the baseline by uploading only about 1% model parameters, for a compression ratio of 32 of the autoencoder.
Abstract:Reconfigurable intelligent surface (RIS) has become a promising technology for enhancing the reliability of wireless communications, which is capable of reflecting the desired signals through appropriate phase shifts. However, the intended signals that impinge upon an RIS are often mixed with interfering signals, which are usually dynamic and unknown. In particular, the received signal-to-interference-plus-noise ratio (SINR) may be degraded by the signals reflected from the RISs that originate from non-intended users. To tackle this issue, we introduce the concept of intelligent spectrum learning (ISL), which uses an appropriately trained convolutional neural network (CNN) at the RIS controller to help the RISs infer the interfering signals directly from the incident signals. By capitalizing on the ISL, a distributed control algorithm is proposed to maximize the received SINR by dynamically configuring the active/inactive binary status of the RIS elements. Simulation results validate the performance improvement offered by deep learning and demonstrate the superiority of the proposed ISL-aided approach.
Abstract:Coronavirus disease 2019 (COVID-19) is an ongoing global pandemic in over 200 countries and territories, which has resulted in a great public health concern across the international community. Analysis of X-ray imaging data can play a critical role in timely and accurate screening and fighting against COVID-19. Supervised deep learning has been successfully applied to recognize COVID-19 pathology from X-ray imaging datasets. However, it requires a substantial amount of annotated X-ray images to train models, which is often not applicable to data analysis for emerging events such as COVID-19 outbreak, especially in the early stage of the outbreak. To address this challenge, this paper proposes a two-path semi-supervised deep learning model, ssResNet, based on Residual Neural Network (ResNet) for COVID-19 image classification, where two paths refer to a supervised path and an unsupervised path, respectively. Moreover, we design a weighted supervised loss that assigns higher weight for the minority classes in the training process to resolve the data imbalance. Experimental results on a large-scale of X-ray image dataset COVIDx demonstrate that the proposed model can achieve promising performance even when trained on very few labeled training images.
Abstract:Artificial neural networks (ANNs) based machine learning models and especially deep learning models have been widely applied in computer vision, signal processing, wireless communications, and many other domains, where complex numbers occur either naturally or by design. However, most of the current implementations of ANNs and machine learning frameworks are using real numbers rather than complex numbers. There are growing interests in building ANNs using complex numbers, and exploring the potential advantages of the so-called complex-valued neural networks (CVNNs) over their real-valued counterparts. In this paper, we discuss the recent development of CVNNs by performing a survey of the works on CVNNs in the literature. Specifically, a detailed review of various CVNNs in terms of activation function, learning and optimization, input and output representations, and their applications in tasks such as signal processing and computer vision are provided, followed by a discussion on some pertinent challenges and future research directions.
Abstract:Machine learning provides effective means to learn from spectrum data and solve complex tasks involved in wireless communications. Supported by recent advances in computational resources and algorithmic designs, deep learning has found success in performing various wireless communication tasks such as signal recognition and spectrum sensing. However, machine learning in general and deep learning in particular has recently been found vulnerable to manipulations in training and test times giving rise to a field of study called Adversarial Machine Learning (AML). Although AML has been extensively studied in other data domains such as computer vision and natural language processing, research for AML in the wireless communications domain is in its early stage. This paper presents a comprehensive review of the latest research efforts focused on AML in wireless communications while accounting for the unique characteristics of wireless systems. First, the necessary background on the various types of AML attacks is provided. Then, a holistic survey of the works developing the AML attacks and the corresponding defense mechanisms in the wireless domain is presented. Finally, recent research trends are identified and the future outlook for AML as a new attack surface for wireless communications is described.
Abstract:Analog hardware implemented deep learning models are promising for computation and energy constrained systems such as edge computing devices. However, the analog nature of the device and the associated many noise sources will cause changes to the value of the weights in the trained deep learning models deployed on such devices. In this study, systematic evaluation of the inference performance of trained popular deep learning models for image classification deployed on analog devices has been carried out, where additive white Gaussian noise has been added to the weights of the trained models during inference. It is observed that deeper models and models with more redundancy in design such as VGG are more robust to the noise in general. However, the performance is also affected by the design philosophy of the model, the detailed structure of the model, the exact machine learning task, as well as the datasets.