Abstract:Diffusion models achieve remarkable generative quality, but computational overhead scales with step count, model depth, and sequence length. Feature caching is effective since adjacent timesteps yield highly similar features. However, an inherent trade-off remains: aggressive timestep reuse offers large speedups but can easily cross the critical line, hurting fidelity, while block- or token-level reuse is safer but yields limited computational savings. We present X-Slim (eXtreme-Slimming Caching), a training-free, cache-based accelerator that, to our knowledge, is the first unified framework to exploit cacheable redundancy across timesteps, structure (blocks), and space (tokens). Rather than simply mixing levels, X-Slim introduces a dual-threshold controller that turns caching into a push-then-polish process: it first pushes reuse at the timestep level up to an early-warning line, then switches to lightweight block- and token-level refresh to polish the remaining redundancy, and triggers full inference once the critical line is crossed to reset accumulated error. At each level, context-aware indicators decide when and where to cache. Across diverse tasks, X-Slim advances the speed-quality frontier. On FLUX.1-dev and HunyuanVideo, it reduces latency by up to 4.97x and 3.52x with minimal perceptual loss. On DiT-XL/2, it reaches 3.13x acceleration and improves FID by 2.42 over prior methods.
Abstract:Traditional ID-based recommender systems often struggle with cold-start and generalization challenges. Multimodal recommendation systems, which leverage textual and visual data, offer a promising solution to mitigate these issues. However, existing industrial approaches typically adopt a two-stage training paradigm: first pretraining a multimodal model, then applying its frozen representations to train the recommendation model. This decoupled framework suffers from misalignment between multimodal learning and recommendation objectives, as well as an inability to adapt dynamically to new data. To address these limitations, we propose LEMUR, the first large-scale multimodal recommender system trained end-to-end from raw data. By jointly optimizing both the multimodal and recommendation components, LEMUR ensures tighter alignment with downstream objectives while enabling real-time parameter updates. Constructing multimodal sequential representations from user history often entails prohibitively high computational costs. To alleviate this bottleneck, we propose a novel memory bank mechanism that incrementally accumulates historical multimodal representations throughout the training process. After one month of deployment in Douyin Search, LEMUR has led to a 0.843% reduction in query change rate decay and a 0.81% improvement in QAUC. Additionally, LEMUR has shown significant gains across key offline metrics for Douyin Advertisement. Our results validate the superiority of end-to-end multimodal recommendation in real-world industrial scenarios.