Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Leonardo Ayala

Leonardo Ayala

Division of Computer Assisted Medical Interventions, German Cancer Research Center, Medical Faculty, Heidelberg University, Heidelberg, Germany

Machine learning-based analysis of hyperspectral images for automated sepsis diagnosis

Jun 15, 2021
Maximilian Dietrich, Silvia Seidlitz, Nicholas Schreck, Manuel Wiesenfarth, Patrick Godau, Minu Tizabi, Jan Sellner, Sebastian Marx, Samuel Knödler, Michael M. Allers, Leonardo Ayala, Karsten Schmidt, Thorsten Brenner, Alexander Studier-Fischer, Felix Nickel, Beat P. Müller-Stich, Annette Kopp-Schneider, Markus A. Weigand, Lena Maier-Hein

* Maximilian Dietrich and Silvia Seidlitz contributed equally. Markus A. Weigand and Lena Maier-Hein contributed equally 

  Access Paper or Ask Questions

Video-rate multispectral imaging in laparoscopic surgery: First-in-human application

May 28, 2021
Leonardo Ayala, Sebastian Wirkert, Anant Vemuri, Tim Adler, Silvia Seidlitz, Sebastian Pirmann, Christina Engels, Dogu Teber, Lena Maier-Hein

  Access Paper or Ask Questions

Out of distribution detection for intra-operative functional imaging

Nov 05, 2019
Tim J. Adler, Leonardo Ayala, Lynton Ardizzone, Hannes G. Kenngott, Anant Vemuri, Beat P. Müller-Stich, Carsten Rother, Ullrich Köthe, Lena Maier-Hein

* Proceedings of the First International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2019, and the 8th International Workshop on Clinical Image-Based Procedures, CLIP 2019 
* The final authenticated version is available online at 

  Access Paper or Ask Questions

Uncertainty-aware performance assessment of optical imaging modalities with invertible neural networks

Mar 08, 2019
Tim J. Adler, Lynton Ardizzone, Anant Vemuri, Leonardo Ayala, Janek Gröhl, Thomas Kirchner, Sebastian Wirkert, Jakob Kruse, Carsten Rother, Ullrich Köthe, Lena Maier-Hein

* Accepted at IPCAI 2019 

  Access Paper or Ask Questions