Abstract:We present VISTAR, a user-centric, multi-dimensional benchmark for text-to-image (T2I) evaluation that addresses the limitations of existing metrics. VISTAR introduces a two-tier hybrid paradigm: it employs deterministic, scriptable metrics for physically quantifiable attributes (e.g., text rendering, lighting) and a novel Hierarchical Weighted P/N Questioning (HWPQ) scheme that uses constrained vision-language models to assess abstract semantics (e.g., style fusion, cultural fidelity). Grounded in a Delphi study with 120 experts, we defined seven user roles and nine evaluation angles to construct the benchmark, which comprises 2,845 prompts validated by over 15,000 human pairwise comparisons. Our metrics achieve high human alignment (>75%), with the HWPQ scheme reaching 85.9% accuracy on abstract semantics, significantly outperforming VQA baselines. Comprehensive evaluation of state-of-the-art models reveals no universal champion, as role-weighted scores reorder rankings and provide actionable guidance for domain-specific deployment. All resources are publicly released to foster reproducible T2I assessment.
Abstract:Background and objective: High-resolution radiographic images play a pivotal role in the early diagnosis and treatment of skeletal muscle-related diseases. It is promising to enhance image quality by introducing single-image super-resolution (SISR) model into the radiology image field. However, the conventional image pipeline, which can learn a mixed mapping between SR and denoising from the color space and inter-pixel patterns, poses a particular challenge for radiographic images with limited pattern features. To address this issue, this paper introduces a novel approach: Orientation Operator Transformer - $O^{2}$former. Methods: We incorporate an orientation operator in the encoder to enhance sensitivity to denoising mapping and to integrate orientation prior. Furthermore, we propose a multi-scale feature fusion strategy to amalgamate features captured by different receptive fields with the directional prior, thereby providing a more effective latent representation for the decoder. Based on these innovative components, we propose a transformer-based SISR model, i.e., $O^{2}$former, specifically designed for radiographic images. Results: The experimental results demonstrate that our method achieves the best or second-best performance in the objective metrics compared with the competitors at $\times 4$ upsampling factor. For qualitative, more objective details are observed to be recovered. Conclusions: In this study, we propose a novel framework called $O^{2}$former for radiological image super-resolution tasks, which improves the reconstruction model's performance by introducing an orientation operator and multi-scale feature fusion strategy. Our approach is promising to further promote the radiographic image enhancement field.